Я купил bluetooth-наушники Motorola Pulse Escape. Звучание в целом понравилось, но остался непонятен один момент. Согласно инструкции, в них имеется переключение эквалайзера. Предположительно, наушники имеют несколько вшитых настроек, которые переключаются по кругу. К сожалению, я не смог определить на слух, какие там настройки и сколько их, и решил выяснить это при помощи измерений.

Итак, мы хотим измерить амплитудно-частотную характеристику (АЧХ) наушников — это график, который показывает, какие частоты воспроизводятся громче, а какие — тише. Оказывается, такие измерения можно произвести «на коленке», без специальной аппаратуры.

Нам понадобится компьютер с Windows (я использовал ноутбук), микрофон, а также источник звука — какой-нибудь плеер с bluetooth (я взял смартфон). Ну и сами наушники, конечно.

(Под катом — много картинок).

Подготовка

Вот такой микрофон у меня нашёлся среди старых гаджетов. Микрофон копеечный, для разговоров, не предназначенный ни для записи музыки, ни тем более не для измерений.

Конечно, такой микрофон имеет свою АЧХ (и, забегая вперёд, диаграмму направленности), поэтому сильно исказит результаты измерений, но для поставленной задачи подойдёт, потому что нас интересуют не столько абсолютные характеристики наушников, сколько то, как они изменяются при переключении эквалайзера.

У ноутбука имелся всего один комбинированный аудиоразъём. Подключаем туда наш микрофон:


Windows спрашивает, что за прибор мы подключили. Отвечаем, что это микрофон:


Windows — немецкий, извините. Я ведь обещал использовать подручные материалы.

Тем самым единственный аудиоразъём оказывается занятым, поэтому и нужен дополнительный источник звука. Скачиваем на смартфон специальный тестовый аудиосигнал — так называемый розовый шум. Розовый шум — это звук, содержащий весь спектр частот, причём равной мощности по всему диапазону. (Не путайте его с белым шумом! У белого шума другое распределение мощности, поэтому его нельзя использовать для измерений, это грозит повреждением динамиков).

Настраиваем уровень чувствительности микрофона. Нажимаем правую кнопку мыши на значке громкоговорителя в Windows и выбираем регулировку устройств записи:


Находим наш микрофон (у меня он получил название Jack Mic):


Выбираем его в качестве устройства записи (птичка в зелёном кружочке). Выставляем ему уровень чувствительности поближе к максимуму:


Microphone Boost (если есть) убираем! Это автоматическая подстройка чувствительности. Для голоса — хорошо, а при измерениях будет только мешать.

Устанавливаем на ноутбук измерительную программу. Я люблю TrueRTA за возможность видеть сразу много графиков на одном экране. (RTA — по-английски АЧХ). В бесплатной демо-версии программа измеряет АЧХ с шагом в октаву (то есть соседние точки измерения отличаются по частоте в 2 раза). Это, конечно, очень грубо, но для наших целей сойдёт.

При помощи скотча закрепляем микрофон около края стола, так чтобы его можно было накрыть наушником:


Важно зафиксировать микрофон, чтобы не сдвинулся в процессе измерений. Подсоединяем наушники проводом к смартфону и кладём одним наушником поверх микрофона, так чтобы плотно закрыть его сверху — примерно так наушник охватывает человеческое ухо:


Второй наушник свободно висит под столом, из него мы будем слышать включённый тестовый сигнал. Убеждаемся, что наушники лежат стабильно, их тоже нельзя сдвигать в процессе измерений. Можно начинать.

Измерения

Запускаем программу TrueRTA и видим:


Основная часть окна — поле для графиков. Слева от него находятся кнопки генератора сигналов, он нам не понадобится, потому что у нас внешний источник сигнала, смартфон. Справа — настройки графиков и измерений. Сверху — ещё кое-какие настройки и управление. Ставим белый цвет поля, чтобы лучше видеть графики (меню View → Background Color → White).

Выставляем границу измерений 20 Hz и количество измерений, скажем, 100. Программа будет автоматически делать указанное количество измерений подряд и усреднять результат, для шумового сигнала это необходимо. Выключаем отображение столбчатых диаграмм, пусть вместо них рисуются графики (кнопка сверху с изображением столбиков, отмечена на следующем скриншоте).

Сделав настройки, производим первое измерение — это будет измерение тишины. Закрываем окна и двери, просим детей помолчать и нажимаем Go:


Если всё сделано правильно, в поле начнёт вырисовываться график. Подождём, пока он стабилизируется (перестанет «плясать» туда-сюда) и нажмём Stop:


Видим, что «громкость тишины» (фоновых шумов) не превышает -40dBu, и выставляем (регулятор dB Bottom в правой части окна) нижнюю границу отображения в -40dBu, чтобы убрать фоновый шум с экрана и покрупнее видеть график интересующего нас сигнала.

Теперь будем измерять настоящий тестовый сигнал. Включаем плеер на смартфоне, начав с малой громкости.

Запускаем измерение в TrueRTA кнопкой Go и постепенно прибавляем громкость на смартфоне. Из свободного наушника начинает доноситься шипящий шум, а на экране возникает график. Добавляем громкость, пока график не достигнет по высоте примерно -10...0dBu:


Дождавшись стабилизации графика, останавливаем измерение кнопкой Stop в программе. Плеер тоже пока останавливаем. Итак, что мы видим на графике? Неплохие басы (кроме самых глубоких), некоторый спад к средним частотам и резкий спад к верхним частотам. Напоминаю, что это не настоящая АЧХ наушников, свой вклад вносит микрофон.

Этот график мы возьмем в качестве эталонного. Наушники получали сигнал по проводу, в этом режиме они работают как пассивные динамики без всяких эквалайзеров, их кнопки не действуют. Занесём график в память номер 1 (через меню View → Save to Memory → Save to Memory 1 или нажав Alt+1). В ячейках памяти можно сохранять графики, а кнопками Mem1..Mem20 в верхней части окна включать или отключать показ этих графиков на экране.

Теперь отсоединяем провод (как от наушников, так и от смартфона) и подключаем наушники к смартфону по bluetooth, стараясь не сдвинуть их на столе.


Снова включаем плеер, запускаем измерение кнопкой Go и, регулируя громкость на смартфоне, приводим новый график по уровню к эталонному. Эталонный график изображён зелёным, а новый — синим:


Останавливаем измерение (плеер можно не выключать, если не раздражает шипение из свободного наушника) и радуемся, что по bluetooth наушники выдают такую же АЧХ, как по проводу. Заносим график в память номер 2 (Alt+2), чтоб не ушёл с экрана.

Теперь переключаем эквалайзер кнопками наушников. Наушники рапортуют бодрым женским голосом «EQ changed». Включаем измерение и, дождавшись стабилизации графика, видим:


Хм. Кое-где есть отличия в 1 децибел, но это как-то несерьёзно. Скорее похоже на погрешности измерений. Заносим и этот график в память, переключаем эквалайзер ещё раз и после измерения видим ещё один график (если очень хорошо присмотреться):


Ну, вы уже поняли. Сколько я ни переключал эквалайзер на наушниках, никаких изменений это не давало!

На этом, в принципе, можно заканчивать работу и делать вывод: у этих наушников работающего эквалайзера нет . (Теперь понятно, почему его не получалось услышать).

Однако тот факт, что мы не увидели никаких изменений в результатах, огорчает и даже вызывает сомнения в правильности методики. Может, мы измеряли что-то не то?

Бонусные измерения

Чтобы убедиться, что мы измеряли АЧХ, а не погоду на Луне, давайте покрутим эквалайзер в другом месте. У нас же есть плеер в смартфоне! Воспользуемся его эквалайзером:
  1. Амплитудно Частотная Характеристика (АЧХ)

    Амплитудно-частотная характеристика - (сокращенно АЧХ, на английском - frequency response) - зависимость амплитуды колебания (громкости) на выходе от частоты воспроизводимого гармонического сигнала.

    Термин “амплитудно-частотная характеристика ” применяется только в отношении устройств для обработки сигнала и датчиков - т.е. для устройств, через которые проходит сигнал. Когда говорят об устройствах, предназначенных для генерации сигналов (генератор, музыкальные инструменты и т.п.), правильнее использовать термин “частотный диапазон”.

    Начнём из далека .

    Звук - это особый вид механических колебаний упругой среды, способный вызывать слуховые ощущения.

    Основой процессов создания, распространения и восприятия звука являются механические колебания упругих тел:
    - создание звука - определяется колебаниями струн, пластин, мембран, столбов воздуха и других элементов музыкальных инструментов, а также диафрагм громкоговорителей и прочих упругих тел;
    - распространение звука - зависит от механических колебаний частиц среды (воздуха, воды, дерева, металла и др.);
    - восприятие звука - начинается с механических колебаний барабанной перепонки в слуховом аппарате, и только после этого происходит сложный процесс обработки информации в различных отделах слуховой системы.

    Поэтому, чтобы понять природу звука, надо прежде всего рассмотреть механические колебания.
    Колебаниями называются повторяющиеся процессы изменения каких-либо параметров системы (например, перепады температур, биение сердца, движение Луны и т. д.).
    Механические колебания - это повторяющиеся движения различных тел (вращение Земли и планет, колебания маятников, камертонов, струн и др.).
    Механические колебания - это прежде всего движения тел. Механическим движением тела называется «изменение его положения с течением времени по отношению к другим телам».

    Всякие движения описываются с помощью таких понятий, как смещение, скорость и ускорение.

    Смещение -это путь (расстояние), пройденный телом за время его движения от какой-то точки отсчета. Любое движение тела можно описать как изменение его положения во времени (t) и в пространстве (х, у, z). Графически это может быть представлено (например, для тел, которые смещаются в одном направлении) в виде линии на плоскости х (t) - в двухмерной системе координат. Смещение измеряется в метрах (м).

    Если за каждый равный промежуток времени тело смещается на равный отрезок пути, то это равномерное движение. Равномерное движение - это движение с постоянной скоростью.

    Скорость - это путь, пройденный телом в единицу времени.
    Она определяется как «отношение длины пути к промежутку времени, за который этот путь пройден»
    Скорость измеряется в метрах в секунду (м/с).
    Если смещение тела за равные промежутки времени неодинаково, то тело совершает неравномерное движение. При этом скорость его все время изменяется, т. е. это движение с переменной скоростью.

    Ускорение - это отношение изменения скорости к промежутку времени, за который это изменение произошло.

    Если тело движется с постоянной скоростью, то ускорение равно нулю. Если скорость меняется равномерно (равноускоренное движение), то ускорение постоянно: a = const. Если скорость меняется неравномерно, то ускорение определяется как первая производная от скорости (или вторая производная от смещения): a = dv I dt = drx I dt2.
    Ускорение измеряется в метрах на секунду в квадрате (м/с2).

    Простые гармонические колебания (амплитуда, частота, фаза).

    Для того чтобы движение было колебательным (т. е. повторяющимся), на тело должна действовать возвращающая сила, направленная в сторону, противоположную смещению (она должна возвращать тело назад). Если величина этой силы пропорциональна смещению и направлена в противоположную сторону, т. е. F = - кх, то под действием такой силы тело совершает повторяющиеся движения, возвращаясь через равные промежутки времени в положение равновесия. Такое движение тела называется простым гармоническим колебанием . Этот тип движения лежит в основе создания сложных музыкальных звуков, поскольку именно струны, мембраны, деки музыкальных инструментов колеблются под действием упругих возвращающих сил.

    Примером простых гармонических колебаний могут служить колебания массы (груза) на пружине.

    Амплитудой колебаний (A ) называется максимальное смещение тела от положения равновесия (при установившихся колебаниях она постоянна).

    Периодом колебаний (T ) называется наименьший промежуток времени, через который колебания повторяются. Например, если маятник проходит полный цикл колебаний (в одну и другую сторону) за 0,01 с, то его период колебаний равен этой величине: T = 0,01 с. Для простого гармонического колебания период не зависит от амплитуды колебаний.

    Частота колебаний (f ) определяется числом колебаний (циклов) в секунду. Единица ее измерения равна одному колебанию в секунду и называется герц (Гц).
    Частота колебаний - это величина, обратная периоду: f= 1/Т.

    w - угловая (круговая) частота. Угловая частота связана с частотой колебаний по формуле со = 2Пf, где число П = 3,14. Она измеряется в радианах в секунду (рад/с). Например, если частота f = 100 Гц, то со = 628 рад/с.

    f0 - начальная фаза. Начальная фаза определяет положение тела, с которого началось колебание. Она измеряется в градусах.
    Например, если маятник начал колебаться из положения равновесия, то его начальная фаза равна нулю. Если маятник сначала отклонить в крайнее правое положение и затем толкнуть, он начнет колебания с начальной фазой 90°. Если два маятника (или две струны, мембраны и др.) начнут свои колебания с задержкой во времени, то между ними образуется сдвиг фаз

    Если задержка во времени равна одной четверти периода, то сдвиг фаз - 90°, если половине периода -180°, трем четвертям периода - 270°, одному периоду - 360°.

    В момент прохождения положения равновесия тело имеет максимальную скорость, и в эти моменты кинетическая энергия максимальна, а потенциальная равна нулю. Если бы эта сумма была постоянна всегда, то любое тело, выведенное из положения равновесия, колебалось бы вечно, получился бы «вечный двигатель». Однако в реальной среде часть энергии расходуется на преодоление трения в воздухе, трения в опорах и т. д. (например, маятник в вязкой среде колебался бы очень короткий отрезок времени), поэтому амплитуда колебаний становится все меньше и постепенно тело (струна, маятник, камертон) останавливается - происходит затухание колебаний.
    Затухающее колебание графически можно представить в виде колебаний с постепенно уменьшающейся амплитудой.

    В электроакустике, радиотехнике и в музыкальной акустике для определения процессов затухания часто используется величина, называемая добротно- стью системы - Q .​

    Добротность (Q ) определяется как величина, обратная коэффициенту затухания:

    т. е. чем меньше добротность, тем быстрее затухают колебания.

    Свободные колебания сложных систем. Спектр

    Колебательные системы, описанные выше, например маятник или груз на пружине, характеризуются тем, что они имеют одну массу (груз) и одну жесткость (пружины или нити) и совершают движение (колебания) в одном направлении. Такие системы называются системами с одной степенью свободы.
    Реальные колеблющиеся тела (струны, пластины, мембраны и др.), создающие звук в музыкальных инструментах, представляют собой значительно более сложные устройства.

    Рассмотрим колебания систем с двумя степенями свободы, состоящих из двух масс на пружинах.

    При реальном возбуждении струны в ней обычно возбуждается несколько первых собственных частот, амплитуды колебаний на остальных частотах очень малы и не оказывают существенного влияния на общую форму колебаний.


    Набор собственных частот и амплитуд колебаний, которые возбуждаются в данном теле при воздействии на него внешней силы (ударом, щипком, смычком и др.), называется амплитудным спектром .
    Если представлен набор фаз колебаний на этих частотах, то такой спектр называется фазовым.
    Пример формы колебаний струны скрипки, возбужденных смычком, и ее спектр показаны на рисунке

    Основные термины, которые используются для описания спектра колеблющегося тела, следующие:
    первая основная (низшая) собственная частота называется фундаментальной частотой (иногда ее называют основной частотой ).
    Все собственные частоты выше первой называются обертонами , например на рисунке фундаментальная частота 100 Гц, первый обертон - 110 Гц, второй обертон - 180 Гц и т. д. Обертоны, частоты которых находятся в целочисленных соотношениях с фундаментальной частотой, называются гармониками (при этом фундаментальная частота называется первой гармоникой ). Например, на рисунке третий обертон является второй гармоникой, поскольку его частота равна 200 Гц, т. е. относится к фундаментальной частоте как 2:1.

    Продолжение следует... .
    На вопрос: "зачем же уж так из далека?". Отвечу сразу. Что график АЧХ не так прост, как многие его представляют. Главное понять, как он формируется и о чём он нам скажет.

  2. Так уж повелось, что среднестатистическое человечье ухо различает сигналы в диапазоне от 20 до 20 000 Гц (или 20 кГц). Этот довольно солидный диапазон в свою очередь делится обычно на 10 октав (можно поделить на любое другое количество, но принято именно 10).
    В общем случае октава – это диапазон частот, границы которого вычисляются удвоением или ополовиниванием частоты. Нижняя граница последующей октавы получается удвоением нижней границы предыдущей октавы.
    Собственно, зачем нужно знание октав? Оно необходимо для того, чтобы прекратить путаницу в том, что надо называть нижним, средним или еще каким басом и тому подобное. Общепринятый набор октав однозначно определяет, кто есть кто с точностью до герца.

    Последняя строка не нумерована. Это связано с тем, что в стандартную десятку октав она не входит. Обратите внимание на столбец "Название 2". Здесь содержатся названия октав, которые выделяются музыкантами. У этих "странных" людей нет понятия глубокого баса, зато есть одна октава сверху - от 20480 Гц. Поэтому такое расхождение в нумерации и названиях.​

    Теперь можно говорить более предметно о частотном диапазоне акустических систем. Следует начать с неприятной новости: глубокого баса в мультимедийной акустике нет. 20 Гц подавляющее большинство любителей музыки на уровне -3 дБ попросту никогда не слышало. А теперь новость приятная и неожиданная. В реальном сигнале таких частот тоже нет (за некоторым исключением, естественно). Исключением является, например, запись с судейского диска IASCA Competition. Песенка называется "The Viking". Там даже 10 Гц записаны с приличной амплитудой. Этот трек записывали в специальном помещении на огромном органе. Систему, которая отыграет "Викингов", судьи увешают наградами, как новогоднюю елку игрушками. А с реальным сигналом все проще: басовый барабан – от 40 Гц. Здоровенные китайские барабаны – тоже от 40 Гц (есть там среди них, правда, один мегабарабан. Так он аж от 30 Гц начинает играть). Живой контрабас – вообще от 60 Гц. Как можно заметить, 20 Гц здесь не упоминаются. Поэтому можно не расстраиваться по поводу отсутствия настолько низких составляющих. Они для прослушивания реальной музыки не нужны.​

    Вот ещё довольно таки познавательная страничка где можно наглядно (при помощи мыши), более подробнее, разглядеть вот эту табличку​

    Зная азбуку октав и музыки, можно приступить к пониманию АЧХ.
    АЧХ (амплитудно-частотная характеристика) – зависимость амплитуды колебания на выходе устройства от частоты входного гармонического сигнала. То есть системе подают на вход сигнал, уровень которого принимается за 0 дБ. Из этого сигнала колонки с усилительным трактом делают, что могут. Получается у них обычно не прямая на 0 дБ, а некоторым образом изломанная линия. Самое интересное, кстати, заключается в том, что все (от аудиолюбителей до аудиопроизводителей) стремятся к идеально ровной АЧХ, но "пристремиться" боятся.
    Собственно, в чем польза АЧХ и зачем с завидным постоянством стараются замерить эту кривую? Дело в том, что по ней можно установить настоящие, а не нашептанные "злым маркетинговым духом" производителю границы частотного диапазона. Принято указывать, при каком падении сигнала граничные частоты все-таки проигрываются. Если не указано, то считается, что были взяты стандартные -3 дБ. Вот здесь и кроется подвох. Достаточно не указать, при каком падении были взяты значения границы, и можно абсолютно честно указывать хоть 20 Гц – 20 кГц, хотя, действительно, эти 20 Гц достижимы при уровне сигнала, который сильно отличается от положенных -3.
    Также польза АЧХ выражается в том, что по ней, хотя и приблизительно, но можно понять, какие проблемы возникнут у выбранной системы. Причем системы в целом. АЧХ страдает от всех элементов тракта. Чтобы понять, как будет звучать система по графику, нужно знать элементы психоакустики. Если коротко, то дело обстоит так: человек разговаривает в пределах средних частот. Поэтому и воспринимает их же лучше всего. И на соответствующих октавах график должен быть наиболее ровным, так как искажения в этой области сильно давят на уши. Также нежелательно наличие высоких узких пиков. Общее правило здесь такое: пики слышны лучше, чем впадины, и острый пик слышен лучше пологого.

    На шкале абсцисс (синяя ) расположены частоты в герцах (Hz)​

    На шкале ординат (красная ) расположен уровень чувствительности (dB)​

    Зелёная - сама АЧХ​

    При проведении измерений АЧХ в качестве тест-сигнала используют не синусоидальную волну, а специальный сигнал, который называется “розовый шум”.
    Розовый шум - это псевдослучайный широкополосный сигнал, в котором суммарная мощность на всех частотах в пределах любой октавы равна суммарной мощности на всех частотах в пределах любой другой октавы. По звучанию он очень напоминает водопад.

    Громкоговорители представляют собой направленные устройства, т.е. они фокусируют излучаемый звук в определенном направлении. По мере удаления от основной оси громкоговорителя, уровень звука может уменьшаться, а его АЧХ становится менее линейной.
    Громкость

    Часто термины “громкость” и “уровень звукового давления” используют как взаимозаменяемые, но это неправильно, так как термин “громкость” имеет свое определенное значение. Уровень звукового давления в дБ определяют с помощью измерителей уровня звука.

    Кривые равной громкости и Фоны

    Будут ли слушатели воспринимать тестовые шумоподобные или синусоидальные сигналы с линейной АЧХ во всем диапазоне звуковых частот, направленные на усилитель мощности с линейной АЧХ, а затем на громкоговоритель с линейной АЧХ, одинаково громкими на всех частотах? Дело в том, что чувствительность слуха человека имеет нелинейный характер, и поэтому звуки равной громкости на разных частотах слушатели будут воспринимать как звуки с разным звуковым давлением.

    Это явление описывается, так называемыми “кривыми равной громкости” (рисунок), которые показывают, какое звуковое давление требуется создать на разных частотах для того, чтобы для слушателей громкость этих звуков была равна громкости звука с частотой 1 кГц. Чтобы мы воспринимали звуки более высоких и более низких частот, такими же громкими, что и звук с частотой 1 кГц, они должны иметь большее звуковое давление. И чем меньше уровень звука, тем менее чувствительно наше ухо к низким частотам.

    Выставляется уровень звукового давления эталонного звука на частоте 1000 Гц (например, 40 дБ), затем испытуемому предлагается прослушать сигнал на другой частоте (например, 100 Гц), и отрегулировать его уровень таким образом, чтобы он казался равногромким эталонному. Сигналы могут предъявляться через телефоны или через громкоговорители. Если проделать это для разных частот, и отложить полученные значения уровня звукового давления, которые требуются для сигналов разной частоты, чтобы они были равногромкими с эталонным сигналом - получится одна из кривых на рисунке.
    Например, чтобы звук с частотой 100 Гц казался таким же громким, как звук с частотой 1000 Гц с уровнем 40 дБ, его уровень должен быть выше, около 50 дБ. Если будет подан звук с частотой 50 Гц, то, чтобы сделать его равногромким с эталонным, нужно поднять его уровень до 65 дБ и т.п. Если теперь увеличить уровень эталонного звука до 60 дБ и повторить все эксперименты, то получится кривая равной громкости, соответствующая уровню 60 дБ…
    Семейство таких кривых для различных уровней 0, 10, 20…110дБ показано на рисунке. Эти кривые называются кривыми равной громкости . Они были получены учеными Флетчером и Мэнсоном в результате обработки данных большого числа экспериментов, проведенных ими среди нескольких сотен посетителей Всемирной выставки 1931 года в Нью-Йорке.
    В настоящее время в международном стандарте ISO 226 (1987 г.) приняты уточненные данные измерений, полученные в 1956году. Именно данные из стандарта ISO и представлены на рисунке, при этом измерения выполнялись в условиях свободного поля, то есть в заглушенной камере, источник звука располагался фронтально и звук подавался через громкоговорители. Сейчас накоплены новые результаты, и предполагается в ближайшем будущем уточнение этих данных. Каждая из представленных кривых называется изофоной и характеризует уровень громкости звуков разной частоты.

    Если проанализировать эти кривые, то видно, что при малых уровнях звукового давления оценка уровня громкости очень сильно зависит от частоты - слух менее чувствителен к низким и высоким частотам, и требуется создать гораздо большие уровни звукового давления, чтобы звук стал звучать равногромко с эталонным звуком 1000 Гц. При больших уровнях изофоны выравниваются, подъем на низких частотах становится менее крутым - происходит более быстрое нарастание громкости звуков низкой частоты, чем средних и высоких. Таким образом, при больших уровнях низкие, средние и высокие звуки оцениваются по уровню громкости более равномерно.

    Итак. Мы имеем снятый при помощи измерительного оборудования уровень звукового давления и громкость, которую физически воспринимает человек.​


    По этому возникает вопрос! Снимая АЧХ динамика при помощи измерительного оборудования мы что получаем? Что слышит НАШЕ ухо? Или какие показания снимает микрофон своим чувствительным элементом измерительного оборудования? И какой вывод из этих показаний можно сделать?
  3. По этому возникает вопрос! Снимая АЧХ динамика при помощи измерительного оборудования мы что получаем? Что слышит НАШЕ ухо? Или какие показания снимает микрофон своим чувствительным элементом измерительного оборудования? И какой вывод из этих показаний можно сделать?

) мы познакомились с понятием гармонической (синусоидальной ) функции. А бывают ли негармонические функции и сигналы и как с ними работать? В этом нам и предстоит сегодня разобраться 🙂

Гармонические и негармонические сигналы.

И для начала давайте чуть подробнее разберемся, как же классифицируются сигналы. В первую очередь нас интересуют гармонические сигналы, форма которых повторяется через определенный интервал времени , называемый периодом. Периодические сигналы в свою очередь делятся на два больших класса – гармонические и негармонические. Гармонический сигнал – это сигнал, который можно описать следующей функцией:

Здесь – амплитуда сигнала, – циклическая частота, а – начальная фаза. Вы спросите – а как же синус? Разве синусоидальный сигнал не является гармоническим? Конечно, является, дело в том, что , то есть сигналы отличаются начальной фазой, соответственно, синусоидальный сигнал не противоречит определению, которое мы дали для гармонических колебаний 🙂

Вторым подклассом периодических сигналов являются негармонические колебания . Вот пример негармонического сигнала:

Как видите, несмотря на “нестандартную” форму, сигнал остается периодическим, то есть его форма повторяется через интервал времени, равный периоду.

Для работы с такими сигналами и их исследования существует определенная методика, которая заключается в разложении сигнала в ряд Фурье . Суть методики состоит в том, что негармонический периодический сигнал (при выполнении определенных условий) можно представить в виде суммы гармонических колебаний с определенными амплитудами, частотами и начальными фазами. Важным нюансом является то, что все гармонические колебания, которые участвуют в суммировании, должны иметь частоты, кратные частоте исходного негармонического сигнала. Возможно это пока не совсем понятно, так что давайте рассмотрим практический пример и разберемся чуть подробнее 🙂 Для примера используем сигнал, который изображен на рисунке чуть выше. Его можно представить следующим образом:

Давайте изобразим все эти сигналы на одном графике:

Функции , называют гармониками сигнала, а ту из них, период которой равен периоду негармонического сигнала, называют первой или основной гармоникой . В данном случае первой гармоникой является функция (ее частота равна частоте исследуемого негармонического сигнала, соответственно, равны и их периоды). А функция представляет из себя ни что иное как вторую гармонику сигнала (ее частота в два раза больше). В общем случае, негармонический сигнал раскладывается на бесконечное число гармоник:

В этой формуле – амплитуда, а – начальная фаза k-ой гармоники. Как мы уже упомянули чуть ранее, частоты всех гармоник кратны частоте первой гармоники, собственно, это мы и видим в этой формуле 🙂 – это нулевая гармоника, ее частота равна 0, она равна среднему значению функции за период. Почему среднему? Смотрите – среднее значения функции синуса за период равно 0, а значит при усреднении в этой формуле все слагаемые, кроме будут равны 0.

Совокупность всех гармонических составляющих негармонического сигнала называют спектром этого сигнала. Различают фазовый и амплитудный спектр сигнала:

  • фазовый спектр сигнала – совокупность начальных фаз всех гармоник
  • амплитудный спектр сигнала – амплитуды всех гармоник, из которых складывается негармонический сигнал

Давайте рассмотрим амплитудный спектр поподробнее. Для визуального изображения спектра используют диаграммы, представляющие из себя набор вертикальных линий определенной длины (длина зависит от амплитуды сигналов). На горизонтальной оси диаграммы откладываются частоты гармоник:

По горизонтальной оси могут откладываться как частоты в Гц, так и просто номера гармоник, как в данном случае. А по вертикальной оси – амплитуды гармоник, тут все понятно:). Давайте построим амплитудный спектр сигнала для негармонического колебания, которое мы рассматривали в качестве примера в самом начале статьи. Напоминаю, что его разложение в ряд Фурье выглядит следующим образом:

У нас есть две гармоники, амплитуды которых равны, соответственно, 2 и 1.5. Поэтому на диаграмме две линии, длины которых соответствуют амплитудам гармонических колебаний.

Фазовый спектр сигнала строится аналогично, за той лишь разницей, что используются начальные фазы гармоник, а не амплитуды.

Итак, с построением и анализом амплитудного спектра сигнала мы разобрались, давайте перейдем к следующей теме сегодняшней статьи – к понятию амплитудно-частотной характеристики.

Амплитудно-частотная характеристика (АЧХ).

АЧХ является важнейшей характеристикой многих цепей и устройств – фильтров, усилителей звука и т. д. Даже простые наушники имеют свою собственную амплитудно-частотную характеристику. Что же она показывает?

АЧХ – это зависимость амплитуды выходного сигнала от частоты входного сигнала.

Как мы выяснили в первой части статьи, негармонический периодический сигнал можно разложить в ряд Фурье. Но нас сейчас интересует, в первую очередь, аудио-сигнал, и выглядит он следующим образом:

Как видите, ни о какой периодичности здесь не идет речи 🙂 Но, к счастью, существуют специальные алгоритмы, которые позволяют представить звуковой сигнал в виде спектра входящих в него частот. Мы сейчас не будем подробно разбирать эти алгоритмы, это тема для отдельной статьи, просто примем тот факт, что они позволяют нам осуществить такое преобразование с аудио-сигналом 🙂

Соответственно, мы можем построить диаграмму амплитудного спектра звукового сигнала. А пройдя через какую-либо цепь (к примеру, через наушники при воспроизведении звука) сигнал будет изменен. Так вот амплитудно-частотная характеристика как раз и показывает, какие изменения будет претерпевать входной сигнал при прохождении через ту или иную цепь. Давайте обсудим этот момент чуть поподробнее…

Итак, на входе мы имеем ряд гармоник. Амплитудная-частотная характеристика показывает, как изменится амплитуда той или иной гармоники при прохождении через цепь. Рассмотрим пример АЧХ:

Разберемся поэтапно, что же тут изображено… Начнем с осей графика АЧХ. По оси y мы откладываем величину выходного напряжения (или коэффициента усиления, как на данном рисунке). Коэффициент усиления мы откладываем в дБ, соответственно величина, равная 0 дБ, соответствует усилению в 1 раз, то есть амплитуда сигнала остается неизменной. По оси x откладываются частоты входного сигнала. Таким образом, в рассматриваемом случае для всех гармоник, частоты которых лежат в интервале от 100 до 10000 Гц, амплитуда не изменится. А сигналы всех остальных гармоник будут ослаблены.

На графике отдельно отмечены частоты и – их отличительной особенностью является то, что сигнал гармоник данных частот будет ослаблен в 1.41 раза (3 дБ) по напряжению, что соответствует уменьшению в 2 раза по мощности. Полосу частот между и называют полосой пропускания. Получается следующая ситуация – сигналы всех гармоник, частоты которых лежат в пределах полосы пропускания устройства/цепи будут ослаблены менее, чем в 2 раза по мощности.

Частотный диапазон аудиоустройств обычно разбивают на низкие, средние и высокие частоты. Приблизительно это выглядит так:

  • 20 Гц – 160 Гц – область низких частот
  • 160 Гц – 1.28 КГц – область средних частот
  • 1.28 КГц – 20.5 КГц – область высоких частот

Именно такую терминологию обычно можно встретить в разных программах-эквалайзерах, используемых для настройки звука. Теперь вы знаете, что красивые графики из таких программ являются именно амплитудно-частотными характеристиками, с которыми мы познакомились в сегодняшней статье 🙂

В завершении статьи посмотрим на пару АЧХ, полученных в программном эквалайзере:

Здесь мы можем видеть амплитудно-частотную характеристику усилителя. Причем усилены будут преимущественно средние частоты диапазона.

А здесь ситуация совсем другая – низкие и верхние частоты усиливаются, а в области средних частот для гармоник с частотой 500 Гц мы наблюдаем значительное ослабление.

А здесь усиливаются только низкие частоты. Аудиоаппаратура с такой АЧХ будет обладать высоким уровнем басов 🙂

На этом мы заканчиваем нашу сегодняшнюю статью, спасибо за внимание и ждем вас на нашем сайте снова!

Известно, что динамические процессы могут быть представлены частотными характеристиками (ЧХ) путем разложения функции в ряд Фурье.

Предположим, имеется некоторый объект и требуется определить его ЧХ. При экспериментальном снятии ЧХ на вход объекта подается синусоидальный сигнал с амплитудой А вх = 1 и некоторой частотой w, т.е.

x(t) = А вх sin(wt) = sin(wt).

Тогда после прохождения переходных процессов на выходе мы будем также иметь синусоидальный сигнал той же частоты w, но другой амплитуды А вых и фазы j:

у(t) = А вых sin(wt + j)

При разных значениях w величины А вых и j, как правило, также будут различными. Эта зависимость амплитуды и фазы от частоты называется частотной характеристикой.

Виды ЧХ:

·

у” « s 2 Y и т.д.

Определим производные ЧХ:

у’(t) = jw А вых е j (w t + j) = jw у,

у”(t) = (jw) 2 А вых е j (w t + j) = (jw) 2 у и т.д.

Отсюда видно соответствие s = jw.

Вывод: частотные характеристики могут быть построены по передаточным функциям путем замены s = jw.

Для построения АЧХ и ФЧХ используются формулы:

, ,

где Re(w) и Im(w) - соответственно вещественная и мнимая части выражения для АФХ.

Формулы получения АФХ по АЧХ и ФЧХ:

Re(w) = A(w) . cos j(w), Im(w) = A(w) . sin j(w).

График АЧХ всегда расположен в одной четверти, т.к. частота w > 0 и амплитуда А > 0. График ФЧХ может располагаться в двух четвертях, т.е. фаза j может быть как положительной, так и отрицательной. График АФХ может проходить по всем четвертям.


При графическом построении АЧХ по известной АФХ на кривой АФХ выделяются несколько ключевых точек, соответствующих определенным частотам. Далее измеряются расстояния от начала координат до каждой точки и на графике АЧХ откладываются: по вертикали - измеренные расстояния, по горизонтали - частоты. Построение АФХ производится аналогично, но измеряются не расстояния, а углы в градусах или радианах.

Для графического построения АФХ необходимо знать вид АЧХ и ФЧХ. При этом на АЧХ и ФЧХ выделяются несколько точек, соответствующих некоторым частотам. Для каждой частоты по АЧХ определяется амплитуда А, а по ФЧХ - фаза j. Каждой частоте соответствует точка на АФХ, расстояние до которой от начала координат равно А, а угол относительно положительной полуоси Re равен j. Отмеченные точки соединяются кривой.

Пример : .

При s = jw имеем

= = = =

Частотный анализ. АЧХ

15. Сохранить текст из выходного файла в заготовке отчета, предварительно удалив из него пустые строки. Выделить в тексте результаты расчета малосигнальной передаточной функции в режиме анализа по постоянному току, входного и выходного сопротивлений (рис. 13 ).

** Profile: "SCHEMATIC1-post" [ C:\OrCAD_Data\test-

* pspicefiles\schematic1\post.sim ]

**** JOB STATISTICS SUMMARY

Total job time (using Solver 1) = .02

Рис. 13. Фрагмент выходного файла (Output file)

Более подробно текстовый интерфейс программы PSpise A/D, работа с файлами *.cir и *.out, директивы моделирования описаны в .

Частотный анализ. АЧХ

16. Преобразовать схему в соответствии с п. 3 лабораторного задания. Вместо источника входного воздействия поставить источникVAC илиIAC (в соответствии с вариантом), амплитуду переменной составляющей задать произвольно, но не равной нулю. Остальные источники исключить из схемы.

Источник тока имеет бесконечное внутреннее сопротивление (разрыв цепи), а источник напряжения нулевое (перемычка).

Поскольку цепь линейная, а снять требуется АЧХ и ФЧХ амплитуда входного воздействия роли не играет (в пределах величин допустимых в

PSpice, для напряжений и токов – 10 10 вольт или ампер).

VAC иIAC – источники гармонического сигнала для частотного анализа, могут использоваться для анализа по постоянному току.

17. Создать новый профиль моделирования. 3

18. Выбрать тип анализа AC Sweep – анализ схемы в частотной области. Первоначальные параметры анализа задать, как показано нарис. 14 .

Выбор шага по частоте: Linear – линейный,Logarithmic – логарифмический. Для линейного шага указывается общее число точек на шкалу (Total Points ), для логарифмического число точек на декаду или окта-

ву (Points/Decade (Octave )).Start Frequency – начальная частота анализа, не может быть равна 0.End Frequency – конечная частота анализа.

Лабораторная работа №1. Статический, частотный и временной анализ пассивной RLC цепи

Рис. 14. Окно настройки моделирования. Настройка анализа AC Sweep

19. Запустить симуляцию. 2

20. Открыть выходной файл (Output File )4 найти и скопировать в заготовку отчета раздел с директивами анализа (Analysis directives ).

Анализ в частотной области задается по директиве.AC.

21. Построить графики АЧХ.

АЧХ представляет собой зависимость модуля комплексного коэффи-

циента передачи от частоты, может быть определена как отношение амплитуд входного и выходного сигнала.

21.а. Открыть окно Add Traces . В PSpice A/D командаTrace>Add Trace …, клавишаInsert или кнопка на панели инструментов (рис. 15 ).

В версии OrCAD 16 добавить график можно также через контекстное меню, вызываемое щелчком правой кнопки мыши на пустующую область построения.

Рис. 15. Вызов окна Add Traces

Непосредственно функции построения графиков и постобработки результатов моделирования выполняются графическим постпроцессором

Probe встроенным в PSpice A/D.

Лабораторная работа №1. Статический, частотный и временной анализ пассивной RLC цепи Настройка внешнего вида области построения и графиков

21.б. В окне Add Traces (добавить график) с помощью клавиатуры или мыши ввести в строкуTrace Expression выражения для АЧХ всех выходов (рис. 16 ), как отношения выходных, входных напряжений (четный вариант) или токов (нечетный вариант).

В левой части окна Add Traces перечислены все токи и потенциалы узлов вашей схемы. В правой части – список математических функций и связующих, которые программа Probe может применить к отдельным графикам.

Рис. 16. Ввод выражений графиков в окне Add Traces

В результате анализа AC Sweep рассчитываются узловые напряжения

и токи ветвей, являющиеся комплексными величинами. В режиме AC Sweep программа Probe поддерживает вычисления с комплексными числами. Ввод в строкуTrace Expression окнаAdd Traces выражений для комплексных величин без использования каких-либо математических функций и операторовProbe , выводит модуль результата. Если введено выражение для действительной величины, например фаза комплексного коэффициента передачи, то результат может быть и отрицательным. Если же выражение комплексное, например комплексный коэффициент передачи по напряжению V(N1)/V(N4) – определенный как отношение потенциалов узлов N1 и N4, то выводится его модуль, который всегда неотрицательный.

Для обращения к действительной и мнимой части рассчитанных величин используются функции R и IMG соответственно.

В программе Probe также используется функция ABS (absolute value) – абсолютное значение и аналогичная ей M (magnitude) – модуль, соответст-

венно выражения: V(N1)/V(N4), M(V(N1)/V(N4)), ABS(V(N1)/V(N4)) и SQRT(PWR(R(V(N1)/V(N4)),2)+PWR(IMG(V(N1)/V(N4)),2)) – совершенно экви-

валентны. Функция SQRT – квадратный корень, а PWR – возведение в степень, в приведенном примере в квадрат.

Лабораторная работа №1. Статический, частотный и временной анализ пассивной RLC цепи Настройка внешнего вида области построения и графиков

21.в. Проанализировать вид полученных АЧХ, открыть окно настройки профиля моделирования (Simulation Settings ) и изменить, если требуется, граничные частоты анализа, тип шага по частоте, число точек таким образом, чтобы графики приобрели наиболее информативный вид.

Вызвать окно Simulation Settings и изменить директивы моделирования можно прямо из программы PSpice A/D, щелкнув соответствующий значок панели инструментов (рис. 17 ) или командойSimulation>Edit Profile… .

21.г. В окне Simulation Settings, на закладке Probe Windowsпоставить флажок Last plotв группе Show(рис. 18 ) – вывод графиков для последних введенных выражений.

21.д. Если директива моделирования была изменена, запустить симуляцию еще раз.

Запустить симуляцию можно прямо из программы PSpice A/D, нажав соответствующую кнопку на панели инструментов (рис. 17 ) или командой

Simulation>Run.

Рис. 17. Вызов окна Simulation Settings (команда Edit Profile)

и запуск симуляции (команда Run) из программы PSpice A/D

Рис. 18. Окно Simulation Settings.

Закладка Probe Window – настройка отображения результатов моделирования

Лабораторная работа №1. Статический, частотный и временной анализ пассивной RLC цепи Настройка внешнего вида области построения и графиков

После каждой симуляции обнуляется информация о выражениях, введенных в строку Trace Expression , опцияShow Last plot позволяет не вводить выражения заново.

Настройка внешнего вида области построения и графиков

21.е. При необходимости изменить масштаб отображения по осям (линейный или логарифмический) (рис. 19 ).

Рис. 19. Изменения масштаба отображения по осям.

Вызов окна Axis Settings

21.ж. Убрать промежуточные линии сетки.

Открыть окно настройки параметров сетки и осей (Axis Settings ). КомандаPlot>Axis Settings… , либо двойной щелчок левой кнопки мыши в области значений одной из осей, либо выбрать пункт контекстного меню доступного по щелчку правой кнопки мыши по линии сетки (пунктSettings… ) (рис. 19 ).

В окне Axis Settingsна закладках X Gridи Y Gridв разделе Minor Gridsустановите флажок None(рис. 20 ).

21.з. Настроить отображение графиков.

Вызвать окно свойств графика (Trace Properties ). Щелкнуть правой кнопкоймыши линиюграфикаилизначоквстрокеслегендамиграфиков, подосьюХ (рис. 21 ). ВпоявившемсяконтекстномменювыбратьпунктProperties… .

В окне Trace Properties изменить параметры отображения графика: увеличить толщину линий графиков, изменить цвет и тип линий.

Повторить действия для всех графиков.

Аналогичным образом настраиваются параметры отображения линий рамки и сетки.

Лабораторная работа №1. Статический, частотный и временной анализ пассивной RLC цепи Частотный анализ. ФЧХ

Толщина линий влияет на качество печати и восприятия. Следует выбирать цвета линий, которые при черно-белой печати обеспечивают приемлемую четкость и контраст на белом фоне.

Рис. 20. Окно Axis Settings. Настройка отображения промежуточных линий сетки

Рис. 21. Настройка вида графиков

21.и. Сохранить графики АЧХ. Команда Window>Copy to Clipboard (сохранить в буфер обмена), в открывшемся окне в разделеForeground поставить флажокchange white to black (поменять белый с черным), щелкнутьOK (рис. 22 ). Рисунок из буфера обмена вставить в заготовку отчета (Ctrl+V

или Shift+Ins).

В буфер копируется область построения, включая оси, сетку, графики, подписи к осям, легенда и текстовые пометки (рис. 23 ). Размер изображения в буфере, зависит от фактического размера области построения в момент копирования.