Усилители мощности ВЧ

КВ ЛИНЕЙНЫЙ ЛАМПОВЫЙ УСИЛИТЕЛЬ МОЩНОСТИ СЕГОДНЯ

Часть первая

Очень многие коротковолновики убеждены - о ламповых усилителях известно все. И даже больше... Может быть. Вот только число некачественных сигналов в эфире не уменьшается. Скорее наоборот. И что самое печальное, все это происходит на фоне роста количества используемых промышленных импортных трансиверов, параметры передатчиков которых достаточно высоки и удовлетворяют требованиям FCC (американской Федеральной комиссии связи). Однако иных моих коллег по эфиру, смирившихся с тем, что FT 1000 "на коленке" не сделаешь и использующих РА, сконструированные по канонам тридцатилетней давности (ГУ29 + три ГУ50) и т.д., не покидает уверенность, что по РА "мы впереди планеты всей". Замечу, "они там, за рубежом", не только покупают, но и конструируют РА, достойные внимания и повторения.

Как известно, на KB в усилителях мощности применяются схемы с общей сеткой (ОС) и с общим катодом (ОК). Выходной каскад с ОС - почти стандарт для радиолюбителей СНГ. Здесь используются любые лампы - и специально предназначенные для работы по схеме с ОС, и лампы для линейного усиления в схемах с ОК. По-видимому, объяснить это можно следующими причинами:
- схема с ОС теоретически не склонна к самовозбуждению, т.к. сетка заземлена либо по ВЧ, либо гальванически;
- в схеме с ОС линейность на 6 дБ выше за счет отрицательной обратной связи по току;
- РА с ОС обеспечивают более высокие энергетические показатели, чем РА с ОК.

К сожалению, что хорошо в теории, на практике хорошо не всегда. При использовании тетродов и пентодов с высокой крутизной вольтамперной характеристики, третья сетка или лучеобразующие пластины которых не соединены с катодом, РА с ОС могут самовозбуждаться. При неудачном монтаже, некачественных комплектующих (особенно конденсаторах) и плохом согласовании с трансивером легко создаются условия баланса фаз и амплитуд для получения классического автогенератора на KB или УКВ по схеме с ОС. Вообще, согласовать трансивер с РА по схеме ОС не так просто, как об этом иногда пишут. Часто приводимые цифры, например 75 Ом для четырех Г811, верны только теоретически. Входное сопротивление РА с ОС зависит от мощности возбуждения, анодного тока, настройки П-контура и т.д. Изменение любого из этих параметров, например повышение КСВ антенны на краю диапазона, вызывает рассогласование на входе каскада. Но и это еще не все. Если на входе РА с ОС не применяется настроенный контур (а это обычное явление в самодельных усилителях), то напряжение возбуждения становится несимметричным, т.к. ток от возбудителя протекает только на отрицательных полупериодах входного напряжения, и это увеличивает уровень искажений. Таким образом, возможна ситуация, когда вышеприведенные факторы сведут на нет преимущества схемы с ОС. Но, тем не менее, РА с ОС популярны. Почему?

На мой взгляд, вследствие отличных энергетических показателей: когда необходимо "качнуть мощу", схеме с ОС цены нет. О линейности усилителя при этом думают в последнюю очередь, ссылаясь на крепко усвоенное из - "вносимые каскадом искажения мало зависят от выбора рабочей точки на характеристике". Например разработанная для линейного усиления однополосных сигналов лампа ГУ74Б в типовом включении в схеме с ОК должна иметь ток покоя около 200 мА, и вряд ли удастся при этом получить выходную мощность более 750 Вт (при Ua=2500 В) без риска для долголетия лампы, т.к. мощность рассеяния на аноде будет предельной. Другое дело, если ГУ74Б включить с ОС - ток покоя можно установить менее 50 мА, а получить выходную мощность 1 кВт . Сведений об измерении линейности подобных РА разыскать не удалось, а аргументы типа "на данном усилителе проведено множество QSO, и корреспонденты неизменно отмечали высокое качество сигнала" - субъективны, следовательно, неубедительны. Мощность более 1 кВт в приведенном выше примере обеспечивает популярный промышленный ALPHA/POWER ETO 91В, использующий пару ламп ГУ74Б с ОК в рекомендованном производителем режиме работы с известными интермодуляционными характеристиками. По-видимому, разработчики данного усилителя были озабочены не только экономическими соображениями (еще одна лампа удорожает и усложняет конструкцию), но и соответствием параметров РА нормам и требованиям FCC.

Достоинством РА с ОС считается отсутствие необходимости стабилизации напряжений экранной и управляющей сеток. Верно это лишь для схемы, в которой указанные сетки непосредственно соединены с общим проводом . Подобное включение современных тетродов вряд ли можно считать корректным - не только отсутствуют данные о линейности каскада в таком режиме, но и мощность рассеяния на сетках, как правило, превышает допустимую. Мощность возбуждения для такой схемы - около 100 Вт, а это вызывает повышенный разогрев трансивера, например при интенсивной работе на общий вызов. Кроме того, при длинном соединительном кабеле требуется применение на входе усилителя коммутируемого П-контура, чтобы избежать высоких значений КСВ и связанных с этим проблем.

К недостаткам схем с ОК причисляют необходимость стабилизации напряжений экранной и управляю щей сеток; однако у современных тетродов в режиме АВ1 мощность, потребляемая указанными цепями, невелика (20...40 Вт), а стабилизаторы напряжения на доступных в настоящее время высоковольтных транзисторах достаточно просты. Если на силовом трансформаторе отсутствуют необходимые напряжения, можно применить подходящие маломощные трансформаторы, подключив их наоборот - вторичной обмоткой к напряжению накала 6,3 или 12,6 В. Другой недостаток схемы с ОК - большая мощность рассеяния на аноде в паузах передачи. Один из возможных путей ее снижения приведен на рис.1 (упрощенная схема из ).

Напряжение возбуждения через емкостный делитель подается на двухполупериодный выпрямитель VD1, VD2 и далее - на компаратор DA1. Срабатывание компаратора переводит лампу из закрытого состояния в рабочий режим. В паузах передачи напряжение возбуждения отсутствует, лампа заперта, и мощность рассеяния на аноде незначительна.

На мой взгляд, РА с ОС может применяться на KB с устаревшими лампами - для удешевления конструкции, или с лампами, специально предназначенными для работы в таком включении. Применение на входе настроенного LC-контура невысокой добротности или П-контура обязательно. Это особенно актуально для трансиверов с широкополосными транзисторными выходными каскадами, нормальная работа которых возможна только на согласованную нагрузку. Безусловно, если выходной каскад трансивера имеет настраиваемый П-контур или антенный тюнер, и длина соединительного кабеля не превышает 1,5 м (т.е. представляет собой емкость для используемого диапазона частот), такой контур можно рассматривать как входной для РА. Но в любом случае применение П-контура на входе РА значительно снижает вероятность самовозбуждения на УКВ. Кстати, именно так реализовано подавляющее большинство РА с ОС, описанных в зарубежной литературе и выпускаемых промышленностью для коротковолновиков. Для радиолюбителей, задумавших создать РА мощностью 500 Вт и более, рекомендуется применение ламп, специально разработанных для линейного усиления радиочастотных сигналов в схеме с ОК. Особую актуальность данная рекомендация приобретает при использовании дорогостоящих "фирменных" трансиверов - в РА с ОС при самовозбуждении на входе присутствует значительная мощность ВЧ- или СВЧ-колебаний, что может привести к выходу из строя либо выходного каскада, либо входных цепей трансивера (в зависимости от коммутации цепи RX - ТХ в момент возникновения самовозбуждения). Увы, это не авторская фантазия, а реальные случаи из практики.

И еще одну проблему нельзя не затронуть, рассматривая ламповые РА - с легкой руки В.Жалнераускаса и В.Дроздова популярность приобрели схемы построения передающей части трансивера, когда после диапазонного полосового фильтра для возбуждения лампового усилителя используется линейное усиление радиочастотного сигнала транзисторными каскадами без промежуточной фильтрации. Конструктивно трансивер упрощается, но цена такой простоты - повышенное содержание побочных излучений при недостаточно тщательной настройке подобных схем.

Ситуация еще больше ухудшается, когда выходной мощности трансивера недостаточно для "раскачки", например в случае ГУ74Б с ОК с широкополосной входной цепью на трансформаторе 1:4. Необходимого усиления обычно добиваются дополнительным широкополосным каскадом . Если используется низкая ПЧ, и после двух-трехконтурного ДПФ передающий тракт имеет коэффициент усиления 40...60 дБ по мощности, а П-контур является единственной селективной цепью этого тракта, то не обеспечивается достаточное подавление побочных излучений. Последствия можно услышать на любительских диапазонах ежедневно, например вторые гармоники, почти равные по мощности основному сигналу. Послушайте, к примеру, участок 3680...3860 кГц, и почти обязательно услышите сигналы второй гармоники от SSB-станций 160-метрового диапазона. Собственно РА также обладает определенной нелинейностью, поэтому даже при подаче на него спектрально чистого радиочастотного сигнала на выходе неизбежно присутствуют гармоники. Одиночный П-контур можно рекомендовать при выходной мощности до 1 кВт. При большей мощности зарубежные любительские и промышленные РА используют П-L контур, изображенный на рис. 1 - коэффициент фильтрации у него в два раза выше.

Рассмотрим теперь схемные решения, демонстрирующие достаточно требовательный подход при конструировании РА.

Публикация знакомит нас с американской версией самодельного РА на ГУ74Б. George Т. Daughters, AB6YL, задумав переделать промышленный усилитель Dentron MLA2500, первоначально построенный на триодах по схеме с ОС, остановил свой выбор на лампе ГУ74Б (американское обозначение - 4СХ800А). Для этого проекта он посчитал оптимальным использование режима подачи сигнала возбуждения на управляющую сетку, где входная мощность рассеивается на пятидесятиомном резисторе между сеткой и общим проводом. Это позволило устранить необходимость в настроенных входных контурах и легко обеспечить широкополосность. Низкий импеданс цепи управляющей сетки помогает избежать самовозбуждения и обеспечивает выходному каскаду трансивера стабильную резистивную нагрузку с низким КСВ. Кроме того, очень популярный коммерческий усилитель ALPHA/POWER 91B с выходной мощностью 1500 Вт использует пару 4СХ800А в таком включении - это уже опробованная схема!

Схема усилителя приведена на рис. 2.


Большая входная емкость 4СХ800А (около 50 пФ) требует применения индуктивной компенсации, особенно на высокочастотных диапазонах. Проволочный резистор R1B 6 Вт/6 Ом обеспечивает необходимую индуктивность и дополняет совместно с безиндуктивными R1A и R1С сопротивление нагрузки до требуемого - 50 Ом/50 Вт. Согласно измерениям AB6YL, на частотах ниже 35 МГц входной КСВ - менее 1,1.

Энергетические показатели усилителя можно улучшить, подключая безиндуктивный резистор R2 сопротивлением до 30 Ом между катодом и общим проводом. Этот резистор обеспечивает отрицательную обратную связь, что позволяет снизить ток покоя и несколько улучшить линейность; уровень составляющих пятого порядка уменьшается при этом примерно на 3 дБ.

Параметры П-контура не приводятся, т.к. использованы компоненты от Dentron - MLA2500.

Накал 4СХ800А должен быть включен минимум за 2,5 минуты до подачи напряжений возбуждения и питания.

Технические условия на 4СХ800А/ ГУ74Б , поставляемые на американский рынок, рекомендуют напряжение смещения на управляющей сетке около -56 В при экранном напряжении +350 В. Источник питания управляющей сетки состоит из маломощного трансформатора Т2, включенного наоборот - на вторичную обмотку, используемую как первичная, подается напряжение 6,3 В от основного трансформатора Т1, что обеспечивает около 60 В переменного напряжения. На выходе параметрического стабилизатора VD9, R12 присутствует напряжение -56 В. Любой ток управляющей сетки вызывает нелинейные искажения, приводящие к splatter. Детектор тока сетки собран на операционном усилителе DA1, включенном по схеме компаратора. Когда ток сетки превышает несколько миллиампер, увеличивается падение напряжения на R16, вызывая срабатывание компаратора и свечение красного светодиода.

Экранная сетка питается от стабилизатора напряжения (VT1, VT2, VD7) с защитой от превышения потребляемого тока. Контакты реле К2 переключают экранную сетку между общим проводом (через R13) в режиме приема и напряжением +350 В в режиме передачи. Резистор R9 предотвращает броски напряжения при коммутации реле. Ток экранной сетки индицируется стрелочным прибором РА1, т.к. у тетродов ток экранной сетки - лучший индикатор резонанса и настройки, нежели ток анода. В режиме передачи анодный ток покоя должен быть 150...200 мА, при этом ток экранной сетки составляет около -5 мА (если используется прибор без нуля посередине, то стрелка переместится влево до упора). Усилитель работает в линейном режиме и не нуждается в ALC (пока нет тока управляющей сетки) при токе анода 550...600 мА и токе экранной сетки примерно 25 мА. Если ток экранной сетки при резонансе превышает 30 мА, необходимо увеличить связь с нагрузкой или уменьшить мощность возбуждения. При настройке усилителей на тетродах необходимо помнить, что ток анода увеличивается с ростом мощности возбуждения; ток экранной сетки максимален при резонансе или слабой связи с нагрузкой. Не следует, настраивая усилитель по максимальной выходной мощности, превышать значения параметров, указанных в ТУ для оптимальной линейности. Необходимая мощность возбуждения усилителя уменьшается на высокочастотных диапазонах. Это объясняется влиянием емкости катод - подогреватель, которая шунтирует резистор R2, уменьшая ООС. Необходимо помнить об этом, чтобы избежать перевозбуждения усилителя на 15 и 10 метрах. (Или применить ВЧ-дроссель в цепи накала. Прим. ред.)

Параметры усилителя при входной мощности около 45 Вт приведены в табл.1. (Значение выходной мощности, по-видимому, несколько завышено. Прим.ред.) Перед выключением усилителя после сеанса работы нужно оставить его в положении standby приблизительно на три минуты - вентилятор должен охладить лампу.

Табл.1
Напряжение анода 2200 В
Ток покоя анода 170 мА
Ток анода максимальный 550 мА
Ток экранной сетки максимальный 25 мА 0
Мощность рассеивания на аноде без сигнала 370 Вт
Мощность подводимая 1200 Вт
Мощность выходная 750Вт

Часть вторая

Стремление обеспечить надежную и долговечную работу высоколинейного усилителя мощности ярко продемонстрировал Mark Mandelkern, KN5S . Принципиальные схемы усилителя и вспомогательных цепей приведены на рис.3...8.

Не стоит удивляться обилию полупроводниковых приборов - их применение оправдано и заслуживает внимания, особенно применение схемы защиты. (Однако нельзя утверждать, что все они абсолютно необходимы. Прим. ред.)

При проектировании РА преследовались следующие цели:
- питание нагревателя лампы от стабилизированного источника постоянного тока; применение автоматических таймеров разогрева и охлаждения;
- измерение всех параметров, включая анодный ток и напряжение, без неудобных коммутаций;
- наличие стабилизированных источников смещения и экранного напряжения, допускающих подстройку напряжения в широких пределах;
- обеспечение работоспособности при значительных колебаниях напряжения сети (особенно это актуально при работе в полевых условиях от генератора электрического тока).

Источнику питания подогревателя мощных генераторных ламп редко уделяется должное внимание, а ведь он во многом определяет долговечность работы лампы и стабильность выходной мощности. Разогрев подогревателя должен происходить постепенно, не допуская бросков тока через холодную нить накала. В режиме передачи, когда происходит интенсивная эмиссия электронов, очень важно обеспечить постоянство напряжения накала и, соответственно, температуры катода. Вот основные причины применения для накала лампы стабилизированного источника питания с ограничителем потребляемого тока, который исключает бросок тока в момент включения.

Схема блока питания показана на рис.4 . Выходные напряжения допускают следующие диапазоны регулировки: от 5, 5 до 6 В (накал), от 200 до 350 В (экранная сетка) и от -25 до -125 В (управляющая сетка).

Стабилизатор напряжения накала использует популярную микросхему LN723 в типовом включении. Значительный ток накала тетрода 4СХ1000 (около 9 А) и соединение катода и подогревателя внутри лампы потребовали отдельных проводников большого сечения для сильноточной цепи (А- и А+); по цепи S- и S+ выходное напряжение подается на схему сравнения стабилизатора. Предохранитель FU1 на 10 А лучше всего запаять, а не использовать держатель.

Схема управления нагревателем показана на рис.5 . Схема исключает использование усилителя во время прогрева и защищает нагреватель от повышенного напряжения при неисправности стабилизатора. Защита обеспечивается отключением нагревателя с помощью реле К2 (рис.4). Кроме того, датчик воздушного потока через лампу SA2 (рис.4) контролирует работоспособность вентилятора. Если воздушный поток отсутствует, это также приведет к отключению реле К2 и стабилизатора напряжения накала.

Таймер разогрева (DA3 на рис.5) настроен на пять минут. По ТУ достаточно трех минут, но более длительный разогрев продлит жизнь лампы. Таймер запускается только после появления напряжения на нагревателе. Это определяет компаратор DA2.2, подключенный к точке S+. Так, например, если плавкий предохранитель сгорел, таймер не начнет работу, пока вы не замените предохранитель. При превышении напряжения (например при пробое регулирующего транзистора VT1) срабатывает триггер на DA2.3 и закрывается транзистор VT2, отключая напряжение от обмотки реле К2 (точка HR на рис.5). Конденсатор СЗ обеспечивает начальную установку триггера и, соответственно, открывание транзистора VT2 при подаче напряжения питания.

Наряду с таймером разогрева, усилитель нуждается в таймере охлаждения лампы перед выключением (DA4). При выключении усилителя цепь +12 В разряжается быстрее, чем цепь +24 В (имеющая минимальную нагрузку в режиме приема). На выходе DA2.1 появляется напряжение +24 В, и запускается таймер охлаждения. После запуска на выводе 7 DA4 присутствует низкий уровень напряжения, приводящий к срабатыванию реле К1 (рис.4), через контакты которого обеспечивается работа стабилизаторов +12/-12 В и +24 В. Приблизительно через три минуты на выводе 7 появляется высокий уровень, реле К1 возвращается в исходное состояние, и усилитель окончательно обесточивается. Цепь +24 RLY исключает работу таймера охлаждения, если по каким-либо причинам усилитель был выключен и сразу же включен. Например, прохождение радиоволн заканчивается и диапазон кажется мертвым - вы выключаете усилитель. Внезапно появляется интересный корреспондент - тумблер питания вновь в положении ON! При переходе в режим передачи напряжение +24RLY переводит DA2.1 в низкое состояние и сбрасывает таймер охлаждения.

Как и в случае с напряжением накала, стабилизатор напряжения экранной сетки редко удостаивается внимания при конструировании РА. А зря... Мощные тетроды из-за явления вторичной эмиссии имеют отрицательный ток экранной сетки, поэтому источник питания данной цепи должен не только отдавать ток в нагрузку, но и потреблять его при изменении направления. Последовательные схемы стабилизаторов этого не обеспечивают, и при появлении отрицательного тока экранной сетки транзистор последовательного стабилизатора может выйти из строя. Потеряв несколько высоковольтных транзисторов при настройке усилителя, радиолюбители приходят к решению установить мощный резистор сопротивлением 5...15 кОм между экранной сеткой и общим проводом, смирившись с бесполезным рассеиванием мощности. Применение параллельного стабилизатора напряжения, который может не только отдавать, но и принимать на себя ток, позволяет добиться безотказной работы, однако желательно использовать защиту от превышения тока.

Стабилизатор напряжения экранной сетки собран на транзисторах VT3, VT4 (рис.4). Вместо VT3 типа 2N2222A можно использовать высоковольтный, исключив параметрический стабилизатор R6, VD5, но при этом возможно ухудшение коэффициента стабилизации, т.к. высоковольтные транзисторы имеют невысокий коэффициент усиления. Выходное напряжение определяется суммой напряжения стабилизации VD11 и напряжения на переходах база-эмиттер транзисторов VT3, VT4 (15+0,6+0,6=16,2 В), умноженной на коэффициент, определяемый делителем напряжения R11,R12,R13 (12...20) на выходе стабилизатора.

Шунтирующий транзистор установлен непосредственно на алюминиевой пластине размерами 70х100х5 мм, которая, в свою очередь, крепится на боковой стенке с использованием керамических изоляторов. Резистор R7 ограничивает пиковый ток через шунтирующий транзистор VT4 величиной порядка 100 мА.

Схема ПРИЕМ-ПЕРЕДАЧА (рис.6) проверяет шесть сигналов: наличие воздушного потока через лампу (+12Н), состояние переключателя OPERATE-STANDBY, завершение разогрева накала, наличие анодного напряжения, наличие напряжения смещения и состояние схемы защиты от перегрузки. Схема коммутации прием-передача обеспечивает задержку срабатывания реле КЗ 50 мс (рис.4) при переходе на передачу и задержку отключения коаксиального реле 15 мс при переходе на прием. Если используются вакуумные реле, синхронизация реле может быть легко изменена для полного QSK.

Операционные усилители схемы коммутации прием-передача на рис.6 используют очень простые R-C цепи для получения задержки переключения. В режиме передачи на выходе DA1.4 присутствует напряжение порядка +11 В, что обеспечивает быстрый заряд конденсатора С4 через диод VD8 цепи коаксиального реле коммутации антенны Kant. Конденсатор С5 цепи реле питания экранной сетки заряжается при этом через резистор R26, поэтому экранное реле срабатывает позже. При переходе в режим приема на выходе DA1.4 появляется напряжение около -11 В, и происходит обратный процесс. Вход KEY позволяет уменьшить мощность рассеяния на аноде в паузах передачи и избежать изменения формы посылки CW-сигнала при работе с РА, но для этого необходимо, чтобы трансивер имел соответствующий выход. Схема блокировки при перегрузках (рис.7) срабатывает, когда ток управляющей или экранной сетки, или анода превышает значение 1 мА, -30 мА и 1150 мА соответственно. Схема защиты от перегрузки экранной сетки функционирует только при отрицательных токах. Ограничителем положительного тока экранной сетки является резистор R27 в схеме стабилизатора напряжения. Срабатывание схемы защиты от перегрузки (рис.8) вызывает отключение схемы ПРИЕМ-ПЕРЕДАЧА по цепи OL (рис.6), включение с помощью контактов реле К1 дополнительного резистора R2 в цепи смещения управляющей сетки, включение генератора на DA2.4 и мигание красного светодиода VD9 ПЕРЕГРУЗКА на передней панели.

От однополярного источника +24 В питается только микросхема DA2 (рис.5). Все другие операционные усилители используют напряжение питания +12/-12 В.

На рис.7 приведена схема измерения. Пять стрелочных приборов позволяют измерять с помощью дополнительных кнопок 10(!) параметров: прямую/отраженную мощность в антенне, ток/напряжение управляющей сетки, анодный ток/напряжение, ток/напряжение экранной сетки, напряжение/ток накала. Для считывания значений параметров, указанных через дробь, необходимо нажать соответствующую кнопку. Основные параметры считываются немедленно; вторичные параметры имеют большое значение только при начальной настройке и для подстройки после замены лампы. Самый простой неинвертирующий усилитель, используемый здесь - для измерения анодного напряжения (DA2.1). Допустим, что предел измерений должен быть 5000 В; делитель R7, R8 (рис.3) имеет коэффициент деления 10 000, т.е. 5000 В в точке HV2 - это 0,5 В. Резистор R9 не влияет на работу схемы, поскольку операционный усилитель имеет высокое входное сопротивление. При напряжении питания +12/-12 В максимальное выходное напряжение усилителя около +11/-11 В. Допустим, что +10 В выходного напряжения операционного усилителя соответствуют полному отклонению стрелки измерительного прибора при использовании резистора R22 10 кОм и прибора на 1 мА. Требуемый коэффициент усиления (10/0,5) равен 20. Выбрав R15=10к0м, находим, что резистор обратной связи должен иметь сопротивление 190 кОм. Указанный резистор составлен из подстроечного резистора R20 сопротивлением приблизительно в половину номинального значения и постоянного резистора R19, выбранного из ряда стандартных значений.

Схема измерения тока анода аналогична. Напряжение, пропорциональное анодному току, снимается с резистора отрицательной обратной связи R2 в цепи катода (рис.3). Конденсатор С2 обеспечивает демпфирование показаний измерительного прибора РАЗ при работе SSB.

Экранное напряжение измеряется аналогичным образом. Номиналы резисторов, определяющих коэффициент усиления схем измерения прямой и обратной мощности, зависят от конструкции направленного ответвителя.

Несколько иначе реализована схема измерения тока экранной сетки. Выше указывалось, что ток экранной сетки может иметь и отрицательные, и положительные значения, т.е. требуется измерительный прибор с нулем посередине. Схема реализована на операционном усилителе DA2.3 и имеет диапазон измерения -50...0...50 мА, используя для индикации обычный прибор с нулем слева.

При 50 мА положительного тока экранной сетки падение напряжения на резисторе R23 (рис.4) составляет -5В в точке -Е2. Таким образом, от операционного усилителя необходимо усиление -1, чтобы получить требуемое выходное напряжение +5 В для отклонения стрелки на половину шкалы. При R23=10 кОм резистор обратной связи должен иметь номинальное значение 10 кОм; используются подстроечный R32 и постоянный R30 резисторы. Для смещения стрелки прибора на середину шкалы при напряжении питания -12 В требуется коэффициент усиления +5/-12=-0,417. Точное значение коэффициента усиления и, соответственно, нуль шкалы, устанавливается подстроечным резистором R25.

На операционных усилителях DA2.2, DA2.4 реализована расширенная шкала измерения напряжения накала. Дифференциальный усилитель DA2.2 преобразует напряжение накала в однополярное, т.к. точка S не соединена непосредственно с общим проводом. Суммирующий усилитель DA2.4 реализует расширенный масштаб измерения - от 5,0 до 6,0 В. Фактически, это вольтметр с пределом измерения 1 В, смещенный к начальному значению 5 В.

В схемах выпрямителей применяемые диоды должны быть рассчитаны на соответствующий ток, остальные - любые импульсные кремниевые диоды. За исключением высоковольтных транзисторов, можно применять любые маломощные соответствующей структуры. Операционные усилители - LM324 или подобные. Измерительные приборы - РА1...РА5 с током полного отклонения 1 мА.

Приведенные схемы, безусловно, усложняют РА. Но для надежной повседневной работы в эфире и в соревнованиях стоит затратить дополнительные усилия на создание действительно качественного устройства. Если на диапазонах будет больше чистых и громких сигналов, то в выигрыше окажутся все радиолюбители. За QRO без QRM! Выражаю благодарность И.Гончаренко (EU1TT), советы и замечания которого оказали большую помощь при работе над статьей.

Литература

1. Бунимович С., Яйленко Л. Техника любительской однополосной радиосвязи. - Москва, ДОСААФ, 1970.
2. Радио, 1986, N4, С.20.
3. Дроздов В. Любительские KB трансиверы. - Москва, Радио и связь, 1988.
4. QST ON CD-ROM, 1996, N5.
5. http: //www.svetlana.com/.
6. QEX ON CD-ROM, 1996, N5.
7. QEX ON CD-ROM, 1996, N11.
8. Радиолюбитель. KB и УКВ, 1998, N2, С.24.
9. Радиолюбитель, 1992, N6, С.38.
10. ALPHA/POWER ETO 91B User"s Manual.

Г.ПЕЧЕНЬ (EW1EA) "КВ и УКВ" №9 1998 год

КВ усилитель, о котором пойдет речь в данной статье, предназначен для эксплуатации на любительских радиостанциях первой категории во время проведения соревнований на коротких волнах. В связи с высокой выходной мощностью кв усилителя для законной его эксплуатации необходимо специальное разрешение соответствующих органов связи.

Усилитель имеет существенные отличия от ранее опубликованных мною и другими авторами схем аналогичных конструкций:

    1. Высокая выходная мощность кв усилителя влечет за собой большое потребление энергии по сети ~220V. В связи с этим просадка напряжения сети увеличивается до недопустимых величин, что существенно влияет на качество излучаемого радиостанцией сигнала. Имеется ввиду нестабильность напряжений смещения лампы и напряжения экранной сетки.Примененная в данной конструкции лампа ГУ-84Б обеспечивает высокую линейность усиленного сигнала только в случае высокой стабильности двух указанных напряжений. Просадка напряжения сети влечет за собой достаточно большие изменения этих напряжений даже в случае применения высококачественных стабилизаторов.Решением данной проблемы явилось применение двухступенчатых стабилизаторов питания управляющей и экранной сеток, что дало возможность удерживать значения напряжений в соответствии с требованиями паспортных данных лампы.
    2. Данный кв усилитель снабжен высокоэффективной защитой от перегрузок, которая срабатывает в случае перегрузки усилителя входным сигналом, увеличения КСВ в антенно-фидерной системе, неправильной настройки выходного П-контура и т.д.
    3. Применение автоматической регулировки тока покоя лампы по огибающей позволило уменьшить обдув лампы, т.к. в паузах между посылками телеграфных и телефонных сигналов лампа находится в закрытом состоянии. Таким образом удалось уменьшить шум вентиляторов до минимума.
    4. Кроме того, применение термостатированного управления потоком охлаждающего лампу воздуха позволило достичь небольшого комфорта при работе с усилителем.

Технические характеристики:

  • Частотный диапазон: 1.8 — 28 мГц включая WARC диапазоны.
  • Выходная мощность: 1500 Вт для CW и SSB, 700 Вт для RTTY и FM, кратковременно — до 1000 Вт.
  • Входная мощность — до 35Вт.
  • Входной и выходной импеданс -50 Ом.
  • Интермодуляционные искажения -36Дб при номинальной выходной мощности.

Принципиальная схема

КВ усилитель построен по классической схеме с общим катодом и последовательным питанием выходного П-контура.

Входной сигнал от трансивера подается на разъем «INPUT», встроенный в кв усилитель (см. Рис 1). Далее, через реле обхода и фильтр низких частот — на управляющую сетку лампы. Фильтр нижних частот настроен на частоты 1.7-32 мГц. Кроме того, на управляющую сетку лампы через трансформатор TR1 и измерительный прибор РА1 подается напряжение смещения «BIAS». Трансформатор TR1 выполняет двоякую роль: через него еще подается напряжение ALC на трансивер.

Величина тока анода лампы измеряется прибором РА2, который измеряет величину напряжения на конструктивных (встроенных в панель лампы) резисторах R5-R12. Величина этого напряжения пропорциональна величине анодного тока лампы.

На экранную сетку лампы подается стабилизированное напряжение +340В через контакты реле К3, токоограничивающий резистор R18 и измерительный прибор РА3 с нулем посередине.

Кроме того, в цепи экранной сетки установлены варисторы СН2-2, которые замыкают цепь сетки на корпус в случае превышения напряжения сетки больше +420В. В этом случае перегорает предохранитель FU2. Это одна из многих цепей защиты лампы. С помощью реле К3 напряжение +340В подается на лампу только в режиме передачи.

Напряжение анода +3200В подается на анод лампы через предохранитель FU3, контакты реле К5 «Анод», безиндукционный резистор R22, анодный дроссель L5 и катушки П-контура L2 и L1.

С помощью измерительного прибора PV1 осуществляется измерение выходной мощности, которую выдает кв усилитель. Фактически указанный прибор измеряет выходное напряжение усилителя, которое пропорционально выходной мощности. Данное напряжение снимается с антенной цепи с помощью трансформатора ТА1. В антенной цепи присутствует реле К4, которое призвано коммутировать две антенны.

Переключение диапазонов осуществляется замыкателями RL1-RL7. Диоды VD7-VD12 обеспечивают замыкание неработающих витков катушки П-контура при работе усилителя на высокочастотных диапазонах. Охлаждение лампы осуществляется с помощью вентилятора М1, который установлен в подвале лампы и охлаждает лампу в направлении катод-сетки-анод. Вентилятор питается от отдельного выпрямителя на трансформаторе TV3 через фильтр TV1C24C25TV2C26C27.

Фильтр предназначен для ограничения проникновения в цепи питания вентилятора высокочастотных наводок с П-контура. С помощью резистора R29 осуществляется регулировка количества оборотов вентилятора. Система охлаждения оснащена термостатом для автоматического регулирования мощности воздушного потока в зависимости от температуры лампы.

Датчик температуры размещен в воздушном потоке со стороны анода лампы. Второй вентилятор вытягивает горячий воздух из лампового отсека (на схеме не показан), третий — охлаждает высоковольтный выпрямитель. Все напряжения, необходимые для питания лампы, кроме анодного, заведены в подвал лампы через проходные конденсаторы С13-С23 для ослабления связи сетка-анод.

Детали, размещенные в подвале лампы, очерчены пунктирной линией на схеме.

Лампочки EL1-EL4 осуществляют подсветку приборов.

Схема низковольтного блока питания приведена на Рис.2 и выполнена на двух стандартных (стандарт СССР) трансформаторах TR1-ТСТ-125 и TR2-ТПП-322. Трансформатор ТR2 осуществляет питание накала лампы при надлежащем соединении обмоток(указано на схеме). Трансформатор TR1 обеспечивает питание экранной и управляющей сеток, микросхем стабилизатора управляющей сетки и реле, которые осуществляют переключение режима «прием-передача».

Выпрямители этих напряжений установлены на плате 1. Кроме того, на этой плате установлены стабилизаторы напряжений управляющей и экранной сеток, которые осуществляют первую ступень стабилизации. Узел, размещенный на плате 2, осуществляет динамическую стабилизацию напряжения управляющей сетки, которое изменяется от -95В при отсутствии входного высокочастотного сигнала от трансивера, до -45В при наличии входного сигнала от трансивера.

Другим словами, в паузе между посылками телеграфного сигнала, или между словами в однополосном сигнале, на управляющей сетке напряжение -95В и лампа заперта этим напряжением, при наличии посылки телеграфного сигнала, или звука при работе в однополосном режиме, на управляющей сетке напряжение -55В и лампа в этот момент открыта. Стабилизатор выполнен на микросхемах UA741 и транзисторах IRF9640 и КТ829А.

На плате 3 размещена вторая ступень стабилизатора напряжения экранной сетки, которая выполнена на операционном усилителе UA741 и мощном полевом транзисторе IRF840. В нижней части платы на транзисторах VT4-KT203, VT5-KT3102 и VT6-KT815 размещена система, защищающая кв усилитель от перегрузок. Принцип работы данной системы состоит в измерении тока экранной сетки лампы и отключения высокого напряжения и напряжения коммутации «прием-передача» при превышении установленного с помощью резистора R32 порога срабатывания защиты.

В данном случае порогом срабатывания защиты является ток экранной сетки лампы величиной в 50 мА. Эта величина является паспортным значением тока при котором лампа ГУ-84Б отдает максимальную мощность. Для возврата системы защиты в первоначальное состояние, после устранения неисправностей, которые вызвали превышение установленного тока сетки, служит кнопка «RESET».

На плате 4 размещен формирователь напряжения «прием-передача». Он представляет собой ключ, который выполнен на транзисторе VT7-KT209 и срабатывает при замыкании на «землю» контакта RX/TX.

Высоковольтный блок питания изображен на Рис.3 и особенностей не имеет. Напряжение сети ~220В подается через фильтр TV1C1C2C3C4 и контакты пускового реле К1 на первичную обмотку трансформатора TV2. Реле К2 совместно с мощным резистором R4 осуществляет мягкий пуск выпрямителя. Необходимость этого вызвана применением в фильтре выпрямителя конденсатора большой емкости С6, для первоначальной зарядки которого требуется мощный импульс тока.

С помощью токового трансформатора TV4 и амперметра РА1 измеряется ток, потребляемый от сети ~220В. Вольтметр PV1 измеряет величину анодного напряжения. Поскольку величина анодного тока лампы достигает 2А была применена система охлаждения блока на вентиляторе М1, питание которого осуществляется от отдельного выпрямителя.

Конструкция и детали

Конструктивно кв усилитель располагается в двух блоках (фото1) — блок высоковольтного выпрямителя и сам усилитель с низковольтными источниками питания. На передней панели высоковольтного выпрямителя установлены два прибора, которые измеряют ток, потребляемый от сети, и величину анодного напряжения, а также кнопка включения блока.
Внутренний монтаж блока приведен на фото 2 и фото 3.

На передней панели кв усилителя установлены приборы для измерения тока управляющей сетки, тока экранной сетки, тока анода и выходной мощности кв усилителя, ручки настройки конденсаторов С1 и С2 П-контура, переключатель диапазонов и кнопки управления. На задней панели размещены разъемы для присоединения двух антенн, подачи входного сигнала, подачи высокого напряжения, коммутации усилителя с помощью трансивера, или отдельной педали, подачи ALC и предохранители FU1, FU2 и FU4. Внутренний монтаж усилителя приведен на фото 4.

Низковольтные выпрямители выполнены в виде съемного блока, который показан на фото 5. Транзисторы VT1, VT2 и VT3 размещены на радиаторах площадью 25 кв.см., стабилитроны VD4-VD7 — на радиаторах площадью 30 кв.см.

Конденсаторы С38 и С39 обязательно типа К15У на напряжение 10-12 кВ, С1 — вакуумный на напряжение 4 кВ, С2 — с воздушным зазором не менее 1 мм. С40 и С41 типа КВИ на напряжение 10-12 кВ. С55, С56 и С57 типа КВИ на напряжение 1-2 кВ.

Резисторы R3 и R22 обязательно безиндукционные типа МОУ.

Типы реле указаны на схемах.

Обмоточные данные трансформаторов не приводятся, так как все примененные трансформаторы стандартные за исключением высоковольтного, который был изготовлен на заказ по технологии «TORNADO» исходными данными для которого были:

  1. Напряжение питания ~220В, что является напряжением первичной обмотки.
  2. Напряжение вторичной обмотки ~2600В при токе до 2А.

Настройка усилителя

Данный кв усилитель является достаточно сложным устройством, поэтому настройка должна проводиться очень тщательно и аккуратно. Лампа накаливания в качестве эквивалента нагрузки категорически не подходит поскольку ее сопротивление резко меняется в зависимости от степени накаливания и такая нагрузка является скорее реактивной, нежели активной.

Этап 1. Регулировка и настройка всех источников питания.

Все выпрямители должны выдавать напряжения указанные на схеме. Невысокие требования предъявляются к выпрямителям, которые питают вентиляторы и обмотки реле. Здесь разброс напряжений может изменяться в пределах +-10% от номинального.

Напряжения, питающие вентиляторы, выбираются в зависимости от имеющихся в наличии вентиляторов. Главный вентилятор М1 на Рис.1 типа «улитка» должен обеспечивать подачу в ножку лампы не менее 200 куб.м воздуха в час.

От его правильной работы зависит состояние «не очень дешевой» лампы. Если при отказе двух остальных вентиляторов усилитель будет долго сохранять работоспособность, то при отказе М1 усилитель замолчит надолго. В данной конструкции применен вентилятор, который потребляет ток 3А при напряжении 27В. Такие величины тока и напряжения должен обеспечивать трансформатор TV3 и диоды VD.

Стандартный термостат Т419-М1 позволяет устанавливать температуру срабатывания до 200 градусов. При первой регулировке устанавливаем температуру срабатывания 40 градусов. Подогревая паяльником датчик температуры, убеждаемся в том, что реле срабатывает. Следующая проверка состоит в нагревании датчика температуры лампой при включенном одном только накале. Убедившись в том, что реле четко срабатывает, переходим к следующему выпрямителю.

Второй вентилятор плоский, компъютерный диаметром 120-150мм. Он установлен в усилителе над лампой. В усилителе установлен такой вентилятор на напряжение +24В и потребляемый ток до 0.5А. Третий вентилятор установлен в высоковольтном блоке питания, также компъютерный, но на напряжение +12В и ток до 0.3А. Сответствующее напряжение и ток должен обеспечивать выпрямитель трансформаторе TV3 на Рис.3. Кроме того, на этот выпрямитель нагружено реле задержки К2 и индикаторная лампа, что необходимо учесть при выборе TV3.

Напряжение коммутации «прием-передача» +24VTX формируется с напряжения +24V, которое обеспечивает трансформатор TR1. Ток, потребляемый по этой цепи до 1А. Для питания обмоток замыкателей переключения диапазонов используется второй выпрямитель на +24V с током до 5А. Напряжение питания экранной сетки лампы обеспечивается выпрямителем на диодной матрице VD1. На вход матрицы подается переменное напряжение 350В с одной из вторичных обмоток трансформатора TR1.

После выпрямления и фильтрации напряжение величиной +490В подается на первую ступень стабилизации — резистор R1 и стабилитроны VD4-VD6. Стабилизированное напряжение +430В подается на вход второй ступени стабилизации выполненной на микросхеме DA5 и мощном полевом транзисторе VT3. Уровень стабилизированного напряжения устанавливается с помощью переменного резистора R20. Окончательно установленная величина должна равняться +340В.

Правильно отрегулированный стабилизатор должен обеспечивать такое напряжение при нагрузке до 60 мА. В противном случае необходим подбор величин резисторов R26 и R27. Напряжение питания управляющей сетки обеспечивается выпрямителем на диодной матрице VD2 и после стабилизации первой ступенью оно равняется -100В. Ток потребления по этой цепи составляет не более 10 мА.

Далее, это напряжение стабилизируется с помощью динамического стабилизатора на двух операционных усилителях DA2 и DA3 и двух транзисторах VT1 и VT2. Начальный ток лампы устанавливается резистором R13 и он должен равняться 50 мА. В этот момент напряжение смещения на управляющей сетке лампы должно быть равно -90-95В.

Величина этого напряжения зависит от экземпляра лампы, где, вследствие разброса параметров лампы эта величина может меняться на 10-15%. При появлении высокочастотного сигнала напряжение смещения уменьшается до 45-55В, что соответствует току покоя лампы в 400-500 мА. При соответствии всех узлов питания указанным выше требованиям переходим к следующему этапу.

Этап 2. Настройка входной части. Она заключается в подборе величин индуктивностей L3 и L4, а также величин емкостей С3 и С4 до получения КСВ на входе не превышающего 1.2 на всех диапазонах. Этот этап настройки проводится при вставленной в панельку лампе. Входной сигнал поступает от трансивера при малой мощности 5-10 Вт. Напряжения на лампу не подаются.

Внимание! Перед первой подачей на лампу анодного напряжения необходимо провести тренировку лампы! В противном случае лампа выйдет со строя! Процесс тренировки лампы описан в заводской этикетке на лампу.

Этап 3. Настройка П-контура. Для успешного проведения этого этапа необходим безиндукционный эквивалент нагрузки величиной 50 Ом и мощностью 1.5-2 кВт. Для этого хорошо подходит эквивалент нагрузки от радиостанции Р-140. Кроме этого необходим высокочастотный вольтметр для измерения напряжений до 300В. И, конечно, трансивер с которым в дальнейшем будет работать усилитель. UW3DI для этой цели почти не подходит, хотя при определенной настойчивости и целеустремленности можно обойтись и этим.

Включаем усилитель, 3-4 мин. прогреваем лампу, переводим усилитель в режим «передача» и подаем от трансивера несущий сигнал величиной 5-10 Вт. Проводим эту процедуру на диапазоне 14 мГц при подключенном в антенный разъем усилителя эквиваленте нагрузки с высокочастотным вольтметром и подачей всех напряжений на лампу. Вращением ручек конденсаторов С1 и С2 добиваемся максимума показаний вольтметра. В случае если максимум показаний вольтметра отсутствует необходимо изменить количество витков катушки П-контура.

При правильной настройке П-контура провал анодного тока составляет 10-15% от максимального и он совпадает с максимумом показаний измерителя выходной мощности, а также высокочастотного вольтметра. При увеличении емкости С2 величина провала анодного тока увеличивается, при уменьшении — уменьшается. При подаче на вход усилителя номинальной входной мощности, которая составляет 30-35 Вт, появится ток экранной сетки.

Его величина зависит от величины емкости конденсатора С2: при увеличении С2 увеличивается ток экранной сетки, при уменьшении С2 — ток уменьшается. Таким образом возможно установить ток экранной сетки равным 50 мА. В этом случае выходная мощность усилителя будет максимальной. Дальнейшее увеличение мощности возбуждения влечет за собой появление тока управляющей сетки.

Согласно документации на лампу ГУ-84Б допускается увеличение этого тока до 5 мА. В этом случае лампа отдаст максимальную неискаженную мощность. Как показывает практика, лучше в этот режим не заходить потому, что отмечается появление повышенного уровня интермодуляционных искажений и некоторое расширение полосы излучаемого сигнала.

При подаче номинального уровня раскачки 30-35 Вт мы должны получить напряжение на эквиваленте нагрузки 270-280 В, что соответствует мощности в 1500 Вт. Аналогичные процедуры необходимо провести на всех остальных диапазонах. На диапазонах 21, 24 и 28 мГц допустимо снижение выходной мощности до 1100-1200 Вт.

Вопреки распространённому мифу, радиоэлектроникой занимаются не только из-за экономии средств, но и просто по интересу. Подтверждением тому является довольно хорошо развитое радиоаматорство на Западе, даже среди зажиточных англичан. Недавно на своём блоге один из тамошних радиолюбителей выложил неплохой самодельный усилитель мощности на лампах, с конструкцией и схемой которого мы и решили вас ознакомить. УНЧ однотактный — SimpleSE схемотехника.

Схема усилителя мощности на лампах

Около 95% ламповых SSE усилителей были созданы именно по такой схеме. Это хорошо испытанное и проверенное сочетание. И если это ваш первый проект на лампах — данная схема очень рекомендуется. Усилитель работает с анодным питанием примерно 450 вольт. Кроме указанных, все популярные звуковые лампы могут быть использованы в нем (например 6Н2П и 6П3С).

Компоненты усилителя

  • Предусилитель: 12at7
  • Мощные лампы: 6v6
  • Выпрямитель: 5u4gb
  • Выходные трансформаторы: Edcor GXSE15-8-5K
  • Силовой трансформатор: Edcor XPWR002

Это классическая схема SSE усилителя, где одна лампа является предусилителем, а другая — оконечным каскадом, нагруженным на звуковой трансформатор. Режим Триод / Ультралинейный и переключатель обратной связи являются необязательными. Дроссель тоже можете не ставить, потому он и выведен по схеме за пределы. Резистор фильтра питания R1 и дроссель не должны использоваться одновременно. Установите или одно или другое. Дроссель рекомендуется использовать только при высокой чувствительности колонки. Катодные резисторы смещения (R17 и R27) могут иметь другое значение в вашем усилителе. Конденсаторы фильтра C1 и C2 тоже могут отличаться — желательно в бОльшую сторону.

Высоковольтные стабилизаторы анодного тока на лампы 12at7 выполнены на микросхемах 10M45. Почитайте про них в даташите . Если у вас их нет, и нет возможности купить — просто исключите такие детали и переведите предусилитель в классический вариант включения, как в этой схеме .

Корпус УМЗЧ

Раз уж взялись за аппарат на лампах — то и корпус будем делать под старину. Прекрасным винтажным материалом является дерево. Уж с ДСП точно ни у кого проблем не возникнет. Нужно лишь аккуратно всё спроектировать, учитывая размеры используемых элементов, выпилить, и, при необходимости, покрасить.

В итоге получается вот такой красивый усилитель мощности на лампах, полностью собранный своими руками. Схема не сложная и хорошо запускается при первом включении, если конечно собрана без ошибок. Только помните о безопасности при работе с высокими напряжениями.

Транзисторные усилители мощности КВ диапазона (низкие частоты от 3 до 30 МГц) для трансивера и радиостанции пользуются большим спросом у радиолюбителей. Прежде чем найти обоснование подобному факту, следует отметить, что законодательством страны допускается использование радиоточек до 10 Вт, но люди нередко стремятся купить транзисторные усилители мощности КВ диапазона для трансивера и рации в 50, 100 и даже 200 Вт. Чем это обусловлено? Всё просто.

Для чего нужны мощные усилители?

КВ транзисторные усилители мощности стремятся купить в следующих ситуациях:

  • при эксплуатации раций в условиях большого, густонаселённого города. Стандартные рации мощностью 4 и 10 Вт не способны справиться с помехами, возникающими из-за работы различных предприятий и других причин. Решить проблему способны КВ усилители мощности на транзисторах;
  • при использовании радиоточки в автомобиле. Низкорасположенная антенна не способна обеспечить устойчивую качественную связь. Именно поэтому автомобилисты стремятся купить использовать усиливающие устройства на транзисторах, отличающиеся от ламповых компактностью;
  • при совершении турпоходов. Рации низкой частоты нередко используются туристами. С ними часто случаются различные ЧП. Подавать сигнал об их возникновении можно любым доступным способом, даже используя радиостанцию мощностью 200 Вт.

Как правило, цена на подобное усиливающее устройство довольно высока. Тем не менее, можно найти места, где стоимость усилителей находится на приемлемом уровне. Например, продажа радиотоваров, цена которых довольно низка, ведется магазином «РадиоЭксперт».

Преимущества заказа в «РадиоЭксперт»

Интернет-магазин предлагает недорого заказать различные радиотовары, в том числе и усилители. Ознакомиться с реализуемой продукцией поможет прайс-лист. Стоит отметить, что компания оказывает полную информационную поддержку клиентов.
Онлайн-магазином «РадиоЭксперт» осуществляется доставка всей купленной продукции. Россия и другие страны СНГ – основной рынок сбыта.

Транзисторный - 600 вт - УМ на КВ

Вступление.

Статья написана в течение дня, надо честно признаться, в противовес статье Сергея - EX8A. Который прямо всех призывает вернуться взад («взад» – это направление движения, а «в зад» - это место прибытия).

Однако, кроме моего собственного желания, были также и призывы читающей публики: а самому слабо что-нибудь выложить конкретное… Отвечаю – не слабо. Читайте. Но предупреждаю, что растекаться мыслью не собираюсь, учить прописным истинам – не буду – все в учебниках и справочниках, лирических отступлений будет минимум.

1.Обзор ситуации.

Уверен, что мысль о невозможности создания УМ на КВ мощностью более 1000 вт на транзисторах придумана приверженцами ламп. Наверное, потому что им самим трудно бежать за временем и менять собственные стереотипы мышления. И когда им говорят, что промышленные УМ на КВ в 1 кВт существуют – они отвечают: так это же промышленные.

Что касается УМ на современных лампах, то в качестве аргументов против – на первых местах недолговечность и шум вентилятора. А взамен современным предлагается ГУ-81 (это и есть «взад»).

2. Долговечность.

Не понимаю, почему утверждается, что долговечность современных ламп хуже. В справочниках указано все с точностью до наоборот. Кто-то специально в справочники «липовую» информацию закладывает? Или же у авторов этой «идеи» просто нет другого пути, кроме как перевернуть все с ног на голову, поставив под сомнение данные справочников? А ответ прост – нет другого способа обосновать необходимость появления на свет конструкции на СТАРЫХ лампах, которые мало того, что сняты давно с производства, в связи с «профнепригодностью», но у которых давным-давно закончились все мыслимые сроки хранения.

Современные, видите ли надо тренировать, а как быть с этими лохматых годов ГУ-81? Ну конечно же нельзя сказать, что их тренировать не надо, поэтому так стыдливо говорится, что мол хуже не будет, если их все-таки тоже тренировать, и дальше подробно описывают технологию всей процедуры.

3. Вентиляторы.

Тут совсем все просто: любителям ГУ-81 не интересно даже знать какие там существуют современные вентиляторы. А если подумать, то в блоке питания трансивера 1-2 вентилятора (в моем GSV-4000 – два вентилятора), в самом трансивере 1-2 вентилятора (в моем IC-781 – их 4 штуки), в компьютере 1-2 вентилятора. Итого 3-6 вентиляторов работают непрерывно. И – ничего, не мешают, никто о них и не вспоминает. Почему? Потому, что есть вентиляторы, которые имеют уровень собственного шума на уровне 22-26 db. Это в 10 !!! раз тише негромкого разговора. Почувствуйте разницу! И объемы воздуха они уже «умеют» прокачивать достойные. А какие классные «улитки» сейчас есть! А их еще можно и параллелить (по воздушному потоку)… Но если об этом не знать, то можно конечно ругать ВН-2 и им подобные. Я вот слушал шум вентиляторов ACOM-2000A, скажу я Вам: ничего не жужжит, ничего не мешает, не отвлекает, да и отдает он 2 кВт, да и автоматический тюнер имеется, и восемь микропроцессоров обслуживают весь процесс контроля и управления. А размеры…! И всего-то 2 штуки ГУ-74Б. Будем сравнивать дальше с ГУ-81?

4. Блоки питания.

Что будет, если «коротнуть» плюс источника питания с минусом? Правильно - будет искра. Чем больше мощность источника питания – тем больше искра. Параметр искры – её энергия (грубо – это мгновенная мощность, которую может отдать источник питания). А теперь посмотрим на источник питания анодов УМ на двух ГУ-81. Это источник напряжения в 3000 вольт и током 1-1,5 ампера. А теперь посмотрите на источник питания транзисторного усилителя мощностью в 1000 вт. Это источник напряжения в 48 вольт с током порядка 50 ампер. Чтобы там не говорили, но энергия искры от этих источников будет примерно одинакова. Разница, правда, есть – попробуйте прикоснуться (конечно же случайно) к плюсу источника транзисторного УМ – да ничего с Вами не случится, и попробуйте, также случайно приложить пальчик к аноду. Во втором случае имейте заранее написанное завещание.

Вес источника питания для 2-х ГУ-81 - даже страшно подумать, наверно килограммов 30-40. А габариты? Интересно посмотреть бы фото.

БП для транзисторного усилителя имеет такую характеристику как удельный объем. Это 2 литра объема пространства на 1 квт, а вес всего-то 600-700 граммов на 1 квт.

5. Стоимость.

Уместный вопрос. Поинтересуйтесь в Интернете сколько стоит усилитель на ГУ-84 у известных самодельных «производителей» - ответ прост - не менее 2000 USD, а на ГУ-78Б это уже просто 100000 рублей. И то – не ранее как через 2-3 месяца Вы его сможете получить. Правда надо честно сказать, что сделано все хорошо, добротно, надолго. Уже есть опыт долговременной эксплуатации таких усилителей – 5-7 лет без поломок и замены ламп (лампы – к неудовольствию любителей ГУ-81 – металлокерамика, современные лампы). Кто сказал, что усилитель на транзисторах той же мощности должен стоить дешевле? А при самостоятельном изготовлении, он действительно и реально стоит дешевле. Недавний пример: один радиолюбитель из Питера купил ГУ-91Б с панелькой и вентилятором за 450 USD, для усилителя, который сделали на Украине за 2000 USD. Цена на б/у АСОМ-2000А начинается от 3500 USD. А вы поинтересуйтесь у любителя УМ на ГУ-81, за сколько он бы его продал? В лучшем случае он скажет, что не продается.

Цена подобранной пары транзисторов для 600 ваттного УМ находится в пределах 250-300 USD. Это раз. БП – импульсный. Я использую 2 компьютерных БП по750 ватт каждый. Пара стоит 150 USD. Это два.

Конечно же нет 10 шт реле П1Д или В1В, а то и В2В. Нет переключателя диапазонов. Нет дурацкой настройки П-контура, а это один-два конденсатора и вариометр. И так далее, со всеми «остановками». Это – три.

Остальная стоимость всего УМ слегка подрастает за счет цены корпуса, фильтра, реле обхода и прочей мелочевки.

Если с помощью сумматора сложить мощности двух выходных каскадов по 600 вт, чтобы получить 1200 вт на выходе, то, следовательно, и все затраты надо увеличить почти вдвое. Где можно купить за 900-1000 USD УМ на 1200 вт? И с такими габаритами, и с таким весом? Ответ – нигде.

6. Схема.

Да ничего особенного, никаких «фокусов» - самая обычная двухтактная схема.

На одной плате УМ.

Или вот такой:

Посмотрите детальнее:


на второй – реле обхода, на третьей – выходные диапазонные фильтры, на четвертой источник смещения базовых цепей. Напряжение питания – 48в. Ток покоя выходного каскада – 150-250 ма. Транзисторы TH-430pp. Ферриты – TDK. Обмотки выходного трансформатора – многожильный серебряный провод 2,5-4 мм2 (не более 1 метра).

Трансформаторы сумматора – отдельная тема. Поскольку схему можно найти в любой литературе – её не привожу. Показываю детальные фотографии – все должно быть понятно.

Здесь всё в сборе на радиаторе:

7. Элементная база.

Опять-таки ничего особенного - мощные транзисторы, трансформаторы.

7. Перспективы.

Вот на этом ОДНОМ таком «красавце» можно получить 400-600 вт на КВ.

Двухтактная схема легко отдаст более1000 вт. Два модуля - дадут более 2000 вт. Вес одного 600-ваттного модуля – 2 кг (с радиатором и вентиляторами). Вес одного БП – 0,65 кг. Корпус – вес 1,5 кг. Площадь поверхности радиатора около 2000 см2, сбоку ребра продуваются двумя компьютерными кулерами. Итого все весит менее 5 кг.

А еще хочется этот автоматический и недорогой 200 вт тюнер заставить работать с мощностью порядка 1000 вт, заменив элементы согласующего устройства на более мощные.

Микрофон HEIL SOUND HM-10-5 с двумя «таблетками» (разные частотные диапазоны) здесь для понимания размеров.

Это промышленный 500 вт усилитель на двух MRF-150, которые я вынул;).

А это его обратная сторона.

Не получилось быстро найти промышленный усилитель на 1 квт такого же плана, только у него ребра радиатора в три раза выше, а на плате два параллельных канала усиления с сумматором между ними на выходе.

ВОПРОСЫ???

Часть2. Транзисторный - 600 вт - УМ на КВ

Спасибо всем, кто откликнулся на статью. Даже тем, кто посчитал, что я проходимец, а эта статья – это не более чем «развод» и обман.

Вентиляторы. Замечательная статья Н.Филенко. UA9XBI здесь же на - , не вижу никакого смысла цитировать и повторять. Могу только привести некоторые цифры для ориентации: Среднестатистический винчестер издает шум (средний между состоянием ожидания и состоянием поиска) на уровне 30-35 дб (децибел). Для сравнения: шепот - 10-20 дб, спокойный человеческий голос - 50-60 дб, едущий поезд - 90 дб, взлетающий самолет - 120 дб, болевой порог - более 130 дб. Что же касается боевого применения: шум офиса (принтеры, факсы, ксероксы, etc.) - 50 дб, шум в жилом помещении - 30-40 дб, шум компьютерного вентилятора - 20-34 дб. Хотите купить нормальный вентилятор, пожалуйста: http://www.zifrovoi.ru/catalog/coolers/all/

Фотографии. Похоже, что в именно в этом некоторые стараются найти подвох. Я заказывал и покупал первую плату в Японии, и эти же картинки выложил лишь только потому, что они были сделаны более красиво на синем фоне (я так считаю). В этом никакого секрета нет. Но если, кому-то кажется, что это не так – пожалуйста эта же плата (опять с моим микрофоном).

Мощность. Теперь буду все снимать на моем диване J). Вот еще один УМ

На бумажке, которая проволочкой прикреплена к плате, написана выходная мощность по диапазонам. Разрешение всех фотографий достаточное, чтобы можно было очень подробно все рассмотреть. Что мы там видим: в диапазонах 7, 10, 14, 18 Мгц он отдает 500 вт. Видите там написано - при напряжении питания 28 в и входной мощности 10 вт на всех диапазонах.

На 3,5 и 21 Мгц, соответственно – 320 вт и 400 вт. На 1,9 Мгц – 200 вт, 24 Мгц – 240 вт, и на 28 Мгц 160 вт. Таким образом, по уровню -3дб (а это половина мощности), частотный диапазон усилителя составляет 1,9 – 24 Мгц. Изменение мощности в два раза изменяет уровень сигнала S-метра всего лишь на 0,5 балла. На частоте 28 Мгц уровень принимаемого сигнала упадет на 0,7 балла. Кстати, нужно заметить, что угол раскрыва антенн, определяется точно так же – по уровню половинной мощности, т.е. по уровню -3дб.

Для того, чтобы поднять выходную мощность на 1,9, 24 и 28 Мгц, надо просто увеличить входную мощность в 2-3 раза (20-30вт). Или сделать систему ALC – автоматическую регулировку уровня мощности. Я этого не делал, т.к. мне проще повернуть ручку RFPWR.

Такую мощность отдает плата, которую Вы видите на фото. У меня не вызывает никаких сомнений, что при питании от источника 48 в, и конструктивной оптимизации трансформаторов эта плата может отдать мощность «чуть больше». А если сложить пару таких модулей – вот Вам и 1000 вт. Теперь подумайте, а стоит ли стремиться к 2000 вт, если, в итоге, Вы получите прибавку уровня сигнала на приемном конце всего лишь в 0,5 балла? Пример работы моего соседа, не буду называть его позывной. На 20-ке я его принимаю на 9+50дб (S-метр калиброван), а вторую гармонику на 28 Мгц слышу на 9+5дб. У человека хорошая антенна (biggun5 эл), а вот усилитель… сделан безукоризненно, аккуратно, красиво, всем говорит, что у меня честных «кило двести». А там две лампы ГМИ-11 в параллель и анодное напряжение под 2500 вольт. Это как? Нормально? Никакие увещевания не помогают. И хоть сам неплохой инженер и понимает, что уменьшение уровня в 0,5 балла – это ерунда, НИЧЕГО не делает.

У меня есть усилитель на ГУ-73П, с охлаждением каким-то хладоагентом. И блок питания к нему, который мне уже лень было фотографировать. Я его так ни разу и не включил (отдает он 2500 вт), БП весит около 50 кг. Хотели его как-то украсть из-за алюминиевой обшивки, но не смогли поднять hi-hi.

Блоки питания. Сначала фото импульсного БП известной американской фирмы

Этот ИБП дает 20 вольт и 125 ампер, итого 2500 вт. Вес – примерно 12-15 кг. При исследовании на столе у RZ3CC, оказалось, что абсолютно не подходит для наших применений. В моменты переключений ключевых транзисторов такие импульсы скачут, что становится даже неинтересно искать варианты защиты от них приемника. Правда, надо сказать, что это разработка примерно 15-летней давности, и тогда конечно еще не знали о резонансных ИБП. Суть в том, что не подходит для больших мощностей принцип работы преобразователей, которые используются в БП для современных трансиверов.

Теперь посмотрим на те ИБП, которыми я пользуюсь.

Это понятно - компьютерный ИБП. Для тех кто что-то говорил о больших токах – увеличьте картинку и увидите надпись 5в/50а – никаких болтов и гаек. Это я к тому, что ничто Вам не мешает делать подключение например даже ленточным кабелем.

Здесь два ИБП, верхниё 5в/20а, нижний 5в/90а. Движение вперед заметно – ИБП стали заметно меньше и легче. В ИБП IC-781 500вт блок питания имеет очень небольшие габариты и вес порядка 1,5-2 кг, но ему уже более 15 лет. Согласитесь, что технологии шагнули далеко вперед.

В 750 вт ИБП для компьютера есть уже две обмотки по 12в/22а. Берете два таких ИБП и получаете 48в/22а подводимой мощности. Только не забудьте развязать источники диодами. Если же немного поколдовать с другими напряжениями этих ИБП, то можно получить подводимую мощность 1600вт.

Мой же выходной каскад работал с традиционным ИП – трансформаторным, на фотографии ниже Вы видите шину, которой намотан ОСМ -1 1,0 , кстати, его цена в Интернете 2930 рублей.

Намотка такой шиной не сильно поднимает энтузиазм, да и вес трансформатора получается совсем немаленький.

Я уже говорил о том, что к лампам отношусь НОРМАЛЬНО, они еще долгое время будут вне конкуренции в промышленности. Но все же хочется, что-то более компактное и легкое. Оказалось – это делают, правда не для широкой аудитории. В одном НИИ мне предложили импульсный БП для лампового УМ. Сказали так: 3000в, 1,5а, в корпусе, с защитами, с надежностью по самому высокому классу, в объеме 3 литров, весом 2-3 кг, все элементы импортные (ферриты только Epcos), за 30000 рублей, за 1 месяц. Я спросил, а можно посмотреть схему, ответ – 15000 рублей, и схема с подробным описанием – твоя. Схему покупать я не стал. Но понял, что есть варианты очень любопытные для радиолюбителей.

Это киловаттный модуль на двух ГИ-46Б. Вентиляторы и радиаторы от процессора. Площадь радиатора у каждой лампы по 850 см2, это почти в два раза больше, чем у «родного» радиатора. Эта идея пока остановлена в своем воплощении, ввиду появления альтернативной – на транзисторах.

Схема. Приведу обе схемы, которые я получил.

Как я и говорил – ничего необычного – самые стандартные схемы. Ток покоя каждого транзистора 150-250 ма. Что касается ферритов – сильно не советовал бы использовать наши ферриты вообще. Причина одна – нестабильность параметров. У Рэда несколько вариантов ферритов – выбирайте любой, подходящий по мощности и частоте. Выходные трансформаторы: у меня имеют несколько вариантов – голубые ферриты это AmidonFT-23-43, диаметр 23мм, материал 43, по 6 штук в каждом столбике. 4 витка провода сечением 1,5 мм кв. Во втором усилителе кольца TDKK6a.77.08 внешний диаметр 28мм, внутренний диаметр 16мм, высота кольца 8мм. По два кольца в каждом столбике. Четыре витка многожильного серебряного провода, сечением 2-2,5 мм кв. Входные трансформаторы – кольца вн. Диам. 14-16 мм, внутр. – 8мм, длина столбиков – 14-18 мм, материал М600НН. По четыре витка провода сечением 0,35 мм кв. Размеры ферритовых колец в трансформаторах, зависят исключительно от мощности потерь. Именно по этой причине при точном согласовании, размеры колец могут быть очень небольшими. В качестве примера на следующем фото – блок полосовых диапазонных фильтров от 500 вт, ICOMа, который мне подарил RZ3CC (Г. Шульгин).

Не забудьте устанавливать высоковольтные керамические конденсаторы, там где они указаны на схеме.

Здесь показаны измерения зависимости выходной мощности от входной. Не мои измерения. Первая картинка – американская, вторая – японская. Но совершенно очевиден порядок мощностей, я бы сказал заметно лучше, чем на ГУ-74Б, и всего-то два 2SC2879. Ну и последняя табличка от японцев, посмотрите – очень характерная. Это работает пара транзисторов MRF448pp, по datasheet у них мощность 250 вт, а отдают больше чем 250х2.

Pвх (вт) Pвых (вт) Vип (V) Iип (A) Pип (вт) КПД (%)

1 82 48.3 7 338 24.3 2 177 48.3 12 580 30.5 5 380 47.8 19 908 41.8 10 530 46.5 24 1116 47.5 14 630 46.0 25 1196 52.7

Согласование. Особое внимание хочу обратить на согласование с антенной транзисторного УМ. Конечно лучше всего использовать автоматический антенный тюнер (кстати, кто-то в форуме решил, что я хочу запихнуть в тот же самый объем в три раза большие переменные емкости и индуктивности. Это ну очень смелое предположение hi-hi), но также необходимо иметь нормальные антенны, или, по крайней мере, ручное согласующее устройство. Мне не понятны высказывания о том, что вот мол лампа будет «держать» большой КСВ, в отличие от транзистора. И при этом совершенно не интересует, тот факт что при этом погаснут в округе все телевизоры и заговорят не только телефоны, но и утюги. Зато «мы работаем» на Альфе, или еще на чем-нибудь, никак не менее одного киловатта. Защита транзисторного УМ достаточно проста, об этом писал в форуме по-моему RK3AQW. Я делаю также, но ограничиваю критический КСВ не 10 а 6. То есть выход усилителя нагружен на безындукционный резистор сопротивлением 300 ом. Это плата за надежность усилителя в целом. Этот резистор состоит из 2-х, один 270 ом, а второй построечный угольный 47 ом. С движка этого резистора через пару диодов с конденсатором, напряжение подается на базу транзисторного ключа на 2N2222, в коллекторе которого стоит РЭС-49, которое своими контактами снимает напряжение смещения с выходного каскада. Поскольку КСВ=6 транзисторы могут «терпеть» достаточно долго, за это время совершенно спокойно снимается смещение. Ну а дальше – ремонт или настройка антенны.

УМ в 1 квт

.

А это вид сзади.

Со стороны деталей видно, что есть два канала, подключается два ИП, есть сумматор. Обратите внимание, справа виден кусочек обрезанного коаксиального кабеля - выход. Отмечаю отдельно – его диаметр 2,5 мм. Думаю, что для мощностей в 1000 вт и более, наши люди применяют кабели внешним диаметром 11-15 мм. Здесь же 2,5 мм наверное вызовет бурю гнева. А ведь есть кабель RG-142, диаметр которого с внешней оболочкой 4,95 мм, который способен передать мощность 3,5 квт на частоте 50 Мгц. И еще обратите внимание на размеры ферритов – никаких намеков на гигантские размеры. И т.д.

Это достаточно «пожилой» микрофонный процессор, в нем компрессор, реверберация, какая-то встроенная мелодия, монитор с приемника, индикатор уровня. Следующее фото - современный прибор, того же назначения.

Это недорогой УКВ 150вт стандартный УМ, в котором легко поместится 600вт УМ КВ, правда теплоотвод слабоват, но его можно обдуть кулером или заменить. А тот усилитель, который внутри, можно легко переделать на КВ ватт этак на 250.

Микрофонный графический эквалайзер. Хорош тем, что в полосе 3 кгц имеет 5 полос активных регулировок.

Это, к примеру, микрофонный коммутатор, может коммутировать два разных микрофона на два разных трансивера в любом порядке (КВ и УКВ, например).

Это трехкиловаттный коаксиальный антенный коммутатор на 6 антенн.

Это фильтр TVI.

А время вот этого чуда, по крайней мере для радиолюбителей, должно бы закончиться.

73! RU3BT. Сергей