Как работает гидромуфта вентилятора охлаждения уаз
Перейти к содержимому

Как работает гидромуфта вентилятора охлаждения уаз

  • автор:

Устройство системы охлаждения УАЗ, Вязкостная муфта, вентилятор

Вязкостная муфта вентилятор неотлемлемая часть системы охлаждения любого современного двигателя. При жидкостном охлаждении он просасывает воздух через радиатор, а при воздушном-подает этот самый воздух (здесь он выступает в роли охлаждающего тела) к нагретым частям мотора. И можно сказать, с момента появления вентиляторов инженеры решают, как сделать его привод оптимальным. Познакомимся с некоторыми результатами из усилий.

Простейшая конструкция привода вентилятора хорошо известна – клиновым ремнем от шкива, установленного на носке коленчатого вала. Но простое не всегда означает самое лучшее. Вентилятор работает постоянно, а значит, постоянно шумит, потребляет мощность, и немалую (3–6% от мощности двигателя), и, главное, охлаждает двигатель независимо от его температурного режима. Именно большая потребляемая мощность побудила отказаться от ременного привода в пользу шестерен на тяжелых двигателях. Чтобы привод не испытывал больших нагрузок при резкой смене режимов работы мотора (не забудьте – вентилятор тоже своего рода маховик и момент инерции его отнюдь не мал), устанавливают фрикционные, гидравлические или упругие резиновые муфты (рис. 1).

Рис. 1. Привод вентилятора с упругой муфтой: 1 – вентилятор; 2 – упругая муфта; 3 – шкив; 4 – шестерня привода вентилятора.

Теперь о том, как заставить вентилятор работать таким образом, чтобы зря не остужать холодный двигатель, и интенсивно трудиться, когда мотору жарко. Одной из самых первых и простых систем регулирования была. замена вентилятора. В жаркое время года использовалась крыльчатка большей производительности, зимой – меньшей. Само собой, что регулирование осуществлялось очень грубо – вряд ли можно представить себе водителя, выбирающего вентиляторы в соответствии с прогнозом погоды и меняющего их чуть ли не ежедневно.

Такая система не решает и другой важной проблемы. Понятно, что конструкция вентилятора и его привода должна обеспечивать достаточное охлаждение, начиная с самых низких оборотов коленчатого вала. На больших же оборотах при жесткой механической связи это приведет к огромному перерасходу энергии: скажем, для машины среднего класса такой вентилятор на максимальных оборотах «съедал» бы около 8 кВт мощности двигателя, в то время как достаточная в таких условиях – не превышает 3–3,5 кВт. В этом причина того, что жесткая механическая передача в наше время почти не применяется.

Как известно, устройства, передающие и преобразующие крутящий момент, в технике называют трансмиссиями, значит, привод вентилятора тоже трансмиссия. Интересно, что многие конструкции, призванные решать указанную выше проблему этого привода, обладают определенным сходством с «большой» трансмиссией автомобиля, передающей крутящий момент на его колеса. Здесь мы можем найти и сцепления, и гидромуфты, и вискомуфты (вязкостные муфты, напомним, сейчас нередко используют вместо межосевого дифференциала), и электрический привод. Рассмотрим наиболее распространенные из этих систем.

Электромагнитное сцепление (рис. 2) автоматически включает вентилятор по достижении определенной температуры охлаждающей жидкости.

Рис. 2. Электромагнитная муфта включения
вентилятора: 1 – шкив; 2 – контактное кольцо; 3 – угольная щетка; 4 – стальное кольцо; 5 – плоская пружина; 6 – вентилятор; 7 – электромагнит.

Такая система применялась на автомобилях ГАЗ–24 ранних серий и многих современных им зарубежных. В этой системе на шкиве помещали мощный кольцевой соленоид. Когда срабатывает датчик, цепь соленоида замыкается и металлическое кольцо, связанное с вентилятором через пластинчатые пружины, примагничивается к шкиву: вентилятор включен и работает до тех пор, пока температура не снизится и управляющий датчик не снимет питания с электромагнита. Подобный же принцип реализован и в автомобилях с поперечным расположением двигателя: датчик температуры включает электродвигатель вентилятора.

В последнее время появились двухскоростные электродвигатели, позволяющие обеспечить ступенчатое регулирование: вентилятор отключен, работает в частичном режиме или на полную производительность. Есть машины и с двумя вентиляторами, которые вводятся в работу последовательно. Попутно заметим, что на тяжелых грузовых машинах и автобусах электровентиляторы – редкость. Представьте себе мощность электрооборудования (генератора, аккумулятора), которая потребуется, чтобы обеспечить необходимые такому вентилятору 10–12кВт. Вот почему здесь все еще царствует «чистая» механика.

На популярных автобусах «Икарус» ставят фрикционную муфту с пневмоприводом – своего рода сцепление, только на условную педаль здесь нажимает не нога, а сжатый воздух. Регулирование включения-отключения осуществляется, естественно, в зависимости от температуры охлаждающей жидкости.

Самые сложные системы умеют плавно регулировать скорость вентилятора. На многих легковых автомобилях (в качестве примера назовем большинство БМВ, «мерседесов»), а также на некоторых грузовиках (в том числе и на отечественном ЗИЛ-4331) в привод вентилятора встроена вискомуфта (рис. 3).

Рис. 3. Вискомуфта вентилятора: 1 – крышка камеры;
2 – лепестковый клапан; 3 – биметаллический терморегулятор; 4 – крышка муфты; 5 – корпус муфты; 6 – ведущий диск; А – резервная полость.

Коротко познакомим с работой такого устройства. Пока мотор не прогрелся, рабочая полость муфты пуста – специальная силиконовая жидкость находится в резервной полости. Двигатель прогревается, термоэластичная пластина постепенно открывает клапан, жидкость поступает в рабочую полость, и, когда проскальзывает между дисками, ее вязкость растет – муфта начинает передавать момент. С ростом температуры рабочая полость заполняется все больше, обороты вентилятора увеличиваются. Таким вот образом плавно регулируется производительность вентилятора. Вискомуфта сконструирована так, что на малых оборотах ее проскальзывание невелико, а при высоких – вентилятор заметно отстает. Это, повторим, позволяет заметно экономить энергию (а значит, и топливо) на высокой скорости, когда обдув радиатора достаточен.

На тяжелых дизельных двигателях для бесступенчатого регулирования оборотов в механике привода нередко используется гидравлическая муфта (рис. 4), подобная той, что работает в автоматических коробках передач. Обороты вентилятора изменяются здесь в зависимости от заполнения полости между ведущим и ведомым колесами муфты. Количество масла, которое поступает из системы смазки двигателя, регулируется автоматически по температуре охлаждающей жидкости.

Рис. 4. Гидромуфта привода вентилятора: 1 – шкив; 2 – ступица вентилятора; 3 – ведущее колесо гидромуфты; 4 – ведомое колесо гидромуфты; 5 – трубки подачи масла в рабочую полость; 6 – ведущий вал; А – рабочая полость.

Гидромуфта используется и на некоторых двигателях воздушного охлаждения, например на известных у нас с давних пор дизелях «Дойц», стоявших на грузовых автомобилях «Магирус». Охлаждающей жидкости в «воздушнике», понятное дело, нет, и подачей масла в муфту управляет терморегулятор, который учитывает температуру воздуха на выходе из системы охлаждения и температуру выхлопных газов. Работа системы зависит и от температуры масла: с ростом ее вязкость последнего снижается, а значит, горячего (и жидкого) масла в рабочую полость муфты поступает больше. Интересная особенность: корпус муфты одновременно служит центрифугой для очистки масла.

Завершая разговор о приводах вентиляторов, заметим: как ни совершенны многие из этих устройств, все же они не способны избавить двигатель внутреннего сгорания от одного из его серьезных недостатков – до 30% энергии топлива, «уходящие» в систему охлаждения, теряются безвозвратно.

УАЗ Патриот УАЗ Хантер УАЗ Буханка УАЗ Фермер УАЗ Патриот пикап УАЗ Патриот пикап тент

© 1997 — 2024 г. Москва УАЗ Сервис диагностика, тюнинг, техническое обслуживание отечественных внедорожников.
На сайте опубликована подробная информация по ремонту УАЗов автомобилей Ульяновского Автомобильного завода.

  • Двигатели автомобилей UAZ
  • Трансмиссия
  • Охлаждение двигателя
  • Мосты и ступицы
  • Рама
  • Кузов и салон
  • Электрооборудование
  • Колеса и шины
  • Особенности вождения УАЗика
  • Ремонт ШРУС
  • Система питания двигателя
  • Установка ГЦС
  • Отопление и вентиляция
  • Карбюратор К-151
  • Регулировка мостов UAZ
  • Полезные переделки УАЗ Патриот
  • Контакты
  • Официальные дилеры УАЗ
  • Обслуживание любых УАЗов
  • Запчасти цены
  • Автосервис УАЗ
  • Тюнинг
  • Карта сайта
  • Реклама на сайте

Гидромуфта привода вентилятора УАЗ

В автомобилях УАЗ привод вентилятора охлаждения реализован с помощью гидромуфты (или вязкостной муфты), которая автоматически включает и выключает вентилятор при изменении температуры двигателя. О гидромуфте УАЗ, ее устройстве, принципах работы, особенностях эксплуатации и обслуживания читайте в этой статье.

Устройство системы охлаждения автомобилей УАЗ

Все двигатели, используемые на автомобилях Ульяновского автозавода, оборудуются классической жидкостной водяной системой охлаждения. Система разделена на два контура — малый и большой. В большой контур входит водяная рубашка в блоке и ГБЦ, радиатор отопителя и радиатор охлаждения двигателя, термостат и система патрубков, в малый — все, кроме радиатора охлаждения. Разделяются контуры термостатом, который в зависимости от температуры охлаждающей жидкости либо открывает, либо закрывает вход в радиатор.

Однако система охлаждения УАЗовских моторов имеет и некоторые особенности. Например, перед радиатором (за радиаторной решеткой) устанавливаются жалюзи, которые позволяют водителю регулировать поток проходящего через радиатор воздуха. Жалюзи управляются из кабины с помощью специальной рукоятки, они позволяют в довольно широких пределах регулировать температуру двигателя в зависимости от температуры наружного воздуха.

Также в двигателях УМЗ и ЗМЗ, устанавливаемых на УАЗы, используются три основных типа привода вентилятора охлаждения:

• Постоянный привод;
• Привод через гидромуфту (также она известна как вязкостная муфта и вискомуфта);
• Привод через электромагнитную муфту.

Двигатели с постоянным приводом вентилятора давно не выпускаются, такая система использовалась на ранних модификациях УАЗ-31512 (УАЗ-469Б) и некоторых других моделях. Однако уже в XX веке старые двигатели ЗМЗ-402 и УМЗ-417 стали оснащаться вискомуфтой, и сегодня практически все двигатели, устанавливаемые на УАЗы, имеют именно гидромуфту привода вентилятора. Определенное распространение получили моторы с электромагнитной муфтой, хотя они еще не приобрели такой популярности, как гидромуфта. Также на УАЗах ограниченно используется электрический привод вентилятора (от электромотора), однако это чаще всего кустарное решение.

Вязкостная муфта играет важную роль в системе охлаждения мотора, поэтому рассмотрим эту деталь более подробно.

Назначение и роль гидромуфты привода вентилятора в системе охлаждения

Вязкостная муфта — простое и надежное решение, которое значительно упрощает конструкцию привода вентилятора, позволяя отказаться от многих деталей. Вискомуфта — это один компактный блок, через который крыльчатка вентилятора связана со шкивом водяного насоса, этот блок не требует каких-либо электрических подключений или соединения с управляющими элементами, и работает автономно от других деталей двигателя.

Гидромуфта выполняет одну функцию — изменение скорости вращения крыльчатки вентилятора охлаждения в зависимости от температуры двигателя. Это достигается тем, что при нагреве муфта увеличивает передачу крутящего момента от помпы на крыльчатку вентилятора, а при охлаждении — уменьшает поток крутящего момент. Причем изменение скорости вращения вентилятора производится плавно, бесступенчато, мгновенного включения и выключения вентилятора с вискомуфтой никогда не происходит.

Вязкостная муфта с помощью фланца устанавливается непосредственно на шкив привода водяного насоса, а на корпус муфты крепится крыльчатка вентилятора. Поэтому вискомуфта всегда вращается вместе со шкивом помпы, независимо от текущей температуры двигателя.

Гидромуфта имеет ряд преимуществ перед другими типами привода вентилятора, которые особенно важны для автомобилей повышенной проходимости, эксплуатируемых в сложных условиях. Например, применение вискомуфты снижает к минимуму роль жалюзи перед радиатором охлаждения, хотя в УАЗах с постоянным приводом вентилятора водителю постоянно приходится управлять жалюзи.

Также в двигателях с гидромуфтой нет необходимости отключать вентилятор или снимать ремень при преодолении бродов — при заезде в воду вискомуфта охлаждается и отключает вентилятор. Также вентилятор прекращает вращаться за счет возросшего сопротивления среды, но если в случае прямого привода или электрического привода принудительное торможение крыльчатки вентилятора чревато износом ремня и поломками, то для вискомуфты это совершенно не опасно.

Наконец, вискомуфта просто упрощает весь привод вентилятора, снижает расход топлива и несколько уменьшает шумность мотора (особенно на холостых оборотах).

Устройство гидромуфты (вязкостной муфты) привода вентилятора УАЗ

В автомобилях УАЗ используются вязкостные муфты с двухступенчатой системой управления. Такие муфты имеют несколько более сложное устройство, чем однокамерные вискомуты ранних выпусков, однако они обеспечивают лучшую работу вентилятора и предотвращают некоторые негативные эффекты. Муфты различных моделей имеют принципиально одинаковое устройство, отличаясь только некоторыми деталями. Поэтому рассмотрим здесь общее устройство вискомуфты автомобилей УАЗ.

Основу муфты составляют две детали: корпус и расположенный внутри него ротор. Установка ротора внутри корпуса производится через подшипники на валу ротора, сам вал переходит во фланец, с помощью которого фискомуфта монтируется на шкиве водяного насоса. Ротор делит внутреннее пространство корпуса на две полости, которые, в свою очередь, специальными пластинами (промежуточными шайбами, они жестко соединены с корпусом) также делятся на две камеры. В итоге внутри муфты образуется четыре полости: две рабочие камеры, расположенные по обе стороны ротора, и два резервуара, расположенные с обратных сторон от пластин.

Со стороны рабочих камер на роторе и шайбах выполнены кольцевые ребра, которые многократно увеличивают площадь поверхности камер и повышают эффективность работы муфты. В сущности, рабочие камеры — это «лабиринты» полостей, в которых циркулирует рабочая жидкость. Такое решение позволяет отказаться от использования пакета фрикционных дисков и упростить конструкцию вискомуфты.

В передней шайбе выполнено четыре впускных канала, расположенных с противоположных сторон. Один канал с каждой стороны связан с передней рабочей камерой, второй — с задней рабочей камерой. Причем для подачи жидкости в заднюю рабочую камеру в роторе выполнены окна. В корпусе муфты либо между передней пластиной и корпусом выполнены перепускные (возвратные) каналы, обеспечивающие подачу жидкости из рабочих камер в передний резервуар.

Впускные каналы закрыты широкой биметаллической пластиной, которая прижата к передней шайбе. Через центр передней стенки корпуса муфты пропущен штифт, который удерживает биметаллическую пластину, а с внешней стороны соединен со спиральной биметаллической пружиной. Биметаллическая пружина через штифт жестко связана с биметаллической пластиной, при этом пластина вместе со штифтом может поворачиваться на некоторый угол, открывая или закрывая впускные каналы.

Однако при повороте биметаллической пластины открывается только один из впускных каналов, открытие второго канала происходит при более высокой температуре вследствие изгиба биметаллической пластины. Таким образом, впускные каналы и биметаллическая пластина образуют систему клапанов, которые открываются и закрываются в зависимости от температуры муфты.

На торце ротора выполнены косые зубья (зубчатый венец), которые играют роль насоса для перекачки рабочей жидкости из рабочих камер в передний резервуар.

Корпус муфты обычно изготавливается из алюминиевого сплава, обладающего высокой теплопроводностью. С внешней стороны корпус имеет оребрение, увеличивающее площадь поверхности муфты. Оба эти решения направлены на снижение тепловой инерционности вискомуфты — благодаря теплопроводному материалу и развитой системе ребер муфта быстрее нагревается и остывает, обеспечивая изменение скорости вращения вентилятора с минимальным запаздыванием за изменением температуры двигателя.

В передней части корпуса муфты предусмотрены шпильки для монтажа крыльчатки, также шпильки закрывают отверстия, через которые в полость гидромуфты заливается рабочая жидкость. В продаже также есть вискомуфты в сборе с крыльчаткой. Иногда имеет смысл покупать именно такую муфту, так как сегодня в УАЗах чаще используются пластиковые вентиляторы, а их срок службы заметно ниже, чем у металлических вентиляторов старой конструкции.

Принцип работы вискомуфты

Работа вязкостной муфты построена на простых принципах, один из которых заложен в ее названии: передача крутящего момента от ротора корпусу обеспечивается за счет вязкости рабочей жидкости. А управление муфтой обеспечивается двумя чувствительными элементами — биметаллической спиральной пружиной и биметаллической пластиной. При изменении температуры биметаллическая пружина раскручивается и скручивается, обеспечивая поворот закрепленной на штифте биметаллической пластины. В свою очередь, биметаллическая пластина при изменении температуры изгибается или выпрямляется, открывая и закрывая каналы.

Когда двигатель холодный (сразу после запуска), вискомуфта имеет низкую температуру, пружина имеет минимальную длину, биметаллическая пластина прижата к делительной пластине, и впускные каналы закрыты. При этом ротор муфты свободно вращается, и за счет центробежных сил и зубьев на торце удерживает рабочую жидкость в резервуаре. Таким образом, рабочие камеры остаются пустыми, и крутящий момент от ротора на корпус не передается. Хотя и в этом случае вентилятор вращается с невысокой скоростью, так как существует некоторое трение в подшипниках.

При нагреве двигателя за счет продуваемого через радиатор набегающего потока воздуха нагревается и муфта. При нагреве биметаллическая пружина раскручивается и поворачивает биметаллическую пластину, которая сдвигается и открывает один впускной канал — рабочая жидкость поступает в переднюю рабочую камеру. За счет вязкости жидкости между ротором и пластиной возникает «вязкое трение», крутящий момент частично передается от ротора на корпус, и вентилятор начинает вращаться. Скорость вращения вентилятора зависит от нагрева двигателя, так как чем сильнее нагрета вискомуфта, тем больше открывается впускной канал, и тем больше жидкости поступает в рабочую камеру.

При значительном нагреве двигателя происходит изгибание биметаллической пластины, в результате чего открывается второй впускной канал, через него рабочая жидкость поступает во вторую рабочую камеру, силы трения между ротором и делительными пластинами возрастают, и крутящий момент с минимальными потерями передается на крыльчатку вентилятора. При максимальном открытии впускных каналов вентилятор вращается примерно с той же частотой, что и шкив водяного насоса.

При охлаждении двигателя происходят обратные процессы: сначала в исходное положение возвращается биметаллическая пластина, закрывая один впускной канал, а затем пластина поворачивается и закрывает второй канал.

После полной остановки двигателя рабочая жидкость стекает в нижнюю часть резервуаров и рабочих камер, что является определенной проблемой: при последующем пуске мотора рабочая жидкость не сможет сразу покинуть рабочие камеры, вентилятор начнет вращаться, что будет мешать нормальному прогреву мотора. Эту проблему решает наличие заднего резервуара большого объема, который расположен чуть ниже уровня рабочих камер. При остановке двигателя рабочая жидкость стекает в этот резервуар и практически не занимает объем рабочих камер, поэтому при последующем пуске двигателя вентилятор будет вращаться с незначительной скоростью, не мешая прогреву.

В качестве рабочей жидкости сегодня используются специальные составы на силиконовой основе. Такие составы обладают интересным эффектом (который называется дилатантным) — их вязкость резко возрастает при высокой скорости деформации сдвига. То есть, находясь в резервуаре, такая жидкость ведет себя, как обычная смазка, но стоит ей попасть в рабочую камеру между движущимися пластинами, как ее вязкость увеличивается. Именно это свойство дилатантных жидкостей и сделало возможным само существование вязкостных муфт.

Конкретно в гидромуфтах отечественных и большинства иностранных автомобилей используется специальная полиметилсилоксановая жидкость ПМС–10000 (ТУ 6–02–737–78). Эта жидкость продается, поэтому существует возможность проводить самостоятельный ремонт и обслуживание вискомуфт.

Таким образом, вязкостная муфта работает в автоматическом режиме, обеспечивая изменение скорости вращения вентилятора в зависимости от изменения температуры двигателя, не прибегая к сложным датчикам, не затрачивая электроэнергию, и не требуя вмешательства водителя. Это очень удобно и эффективно, что и обусловило широкое распространение вискомуфт на автомобилях УАЗ.

Особенности работы и обслуживание гидромуфты привода вентилятора УАЗ

Вязкостная муфта в процессе эксплуатации не нуждается в каком-то специальном техническом обслуживании, и обычно без проблем функционирует до выработки ресурса. Однако для обеспечения лучшего качества работы вискомуфты необходимо следить за чистотой ее поверхности — следует удалять с ее поверхности загрязнения и масляные потеки, которые могут препятствовать нормальному нагреву. Грязная муфта будет работать с запозданием или вовсе не прогреваться до нужной температуры, а значит, управление вентилятором будет происходить некорректно.

Возможны ситуации, когда муфта без каких-либо видимых причин перестает работать, в этом случае ее можно попытаться отремонтировать. Для этого необходимо выполнить несколько простых действий:

  1. Снять муфту;
  2. Демонтировать с муфты крыльчатку;
  3. Выкрутить две шпильки крепления крыльчатки, через отверстие одной из шпилек вылить рабочую жидкость;
  4. Залить в муфту бензин и тщательно промыть;
  5. Вылить бензин, обязательно просушить до полного удаления бензина;
  6. Залить в муфту новый состав ПМС-10000 (для разных муфт разное количество, но обычно это 40 грамм);
  7. Собрать и установить муфту на место.

Если гидромуфта не начинает работать, то проще ее выбросить и купить новую, тем более, ее стоимость не слишком высока.

В заключение скажем, что нередко владельцы УАЗов жалуются на низкое качество работы вискомуфты, а кто-то и вовсе заменяет ее на электрический привод. Однако чаще всего плохая работа муфты связана с указанным выше загрязнением ее поверхности, а также неграмотной регулировкой жалюзи. Хотя справедливости ради стоит заметить, что муфты зарубежного производства по качеству опережают отечественные образцы, и зачастую имеют куда больший ресурс и долговечность. Однако это зависит от конкретной модели вискомуфты, и большинство владельцев УАЗов, особенно новых моделей, вполне довольны работой муфты.

Другие статьи

#Омывающие жидкости
29.09.2023 | Статьи о запасных частях

Зима и лето, два полюса, между которыми меняется весь наш мир. И в этом мире существуют омывающие жидкости — помощники, которые обеспечивают нашу безопасность на дороге. В этой статье мы окунемся в мир омывающих жидкостей и узнаем, какие они бывают, от чего зависит их температура замерзания и как их правильно выбрать.

#Рассухариватель клапанов
21.06.2023 | Статьи о запасных частях

Замена клапанов двигателя внутреннего сгорания затрудняется необходимостью съема сухарей — для этой операции используются специальные рассухариватели клапанов. Все об этом инструменте, его существующих типах, конструкции и принципе действия, а также о его выборе и применении читайте в данной статье.

#Переключатель света с регулировкой шкалы
14.06.2023 | Статьи о запасных частях

Во многих отечественных автомобилях ранних выпусков широко использовались центральные переключатели света с реостатом, позволяющим регулировать яркость подсветки приборов. Все о данных устройствах, их существующих типах, конструкции, работе, а также об их правильном выборе и замене читайте в статье.

#Пластина распределителя зажигания
07.06.2023 | Статьи о запасных частях

Одной из основных деталей распределителя зажигания является опорная пластина, отвечающая за функционирование прерывателя. Все о пластинах прерывателя, их существующих типах и конструктивных особенностях, а также о подборе, замене и регулировках данных компонентов подробно рассказано в данной статье.

Гидромуфта вентилятора: основы работы для автомобиля УАЗ 390994

В статье рассматривается принцип работы гидромуфты вентилятора для автомобиля УАЗ 390994. Описывается устройство гидромуфты и ее функции.

Гидромуфта вентилятора является одной из наиболее важных деталей системы охлаждения УАЗ 390994. Она представляет собой устройство, которое позволяет контролировать скорость вращения вентилятора.

Принцип работы гидромуфты заключается в использовании гидравлической силы. В гидромуфте находятся два колеса: первое колесо жестко связано с валом двигателя, а второе колесо связано с вентилятором. Между ними находится жидкость.

Когда двигатель начинает работать, жидкость начинает циркулировать внутри гидромуфты. Это приводит к перемещению жидкости в направлении вентилятора, что в свою очередь повышает скорость его вращения.

Когда двигатель работает на холостом ходу, вентилятор не нуждается в высокой скорости вращения, поэтому гидромуфта позволяет снизить скорость вращения вентилятора. Это позволяет сохранять мощность двигателя и экономить топливо.

Кроме того, гидромуфта идеально подходит для использования на автомобиле УАЗ 390994, потому что она не имеет механического соединения между валом двигателя и вентилятором. Это позволяет уменьшить нарушения в работе двигателя и увеличить надежность системы в целом.

Таким образом, гидромуфта вентилятора является важной составляющей системы охлаждения автомобиля УАЗ 390994. Ее главной функцией является управление скоростью вращения вентилятора и экономия топлива. Она также способствует более плавной работе двигателя и увеличивает надежность системы охлаждения.

Гидропривод вентилятора холодильной камеры тепловозов 2ТЭ10М и 3ТЭ10М — смотреть видео

В статье: 1 видео (посмотреть) и

Описание, ремонт и технические характеристики гидропривода вентилятора холодильной камеры тепловозов 2ТЭ10М и 3ТЭ10М гидропривод вентилятора, холодильная камера, гидромеханическая муфта/

12. Гидропривод вентилятора холодильной камеры

Устройство и принцип работы. Гидропривод вентилятора передает мощность от дизель-генератора к вентилятору холодильной камеры. Он состоит из регулируемой гидромуфты переменного наполнения и углового редуктора с передаточным отношением 2, 087. Регулируемая гидродинамическая муфта переменного наполнения обеспечивает соответствующие режимы работы холодильной камеры изменением частоты вращения турбинного вала независимо от частоты вращения коленчатого вала дизель-генератора. Изменение режимов работы холодильной камеры достигается взаимодействием с автоматическим приводом, управляющим работой гидромуфты переменного наполнения, что позволяет автоматически поддерживать оптимальную температуру воды и масла в системах дизеля, рационально расходовать мощность для привода вентилятора.

Для того чтобы понять принцип работы гидродинамической муфты (рис. 76, 77), необходимо вначале ознакомиться с основными ее сборочными единицами, которые обеспечивают бесступенчатое изменение частоты вращения и вращающего момента турбинного вала 27 и соответственно вертикального вала 23 привода осевого вентилятора холодильной камеры через коническую пару шестерен. Основным конструктивным элементом, передающим вращающий момент без механической связи валу вентилятора от коленчатого вала дизель-генератора, является гидроаппарат, включающий насосное колесо 33, жестко связанное с ведущим валом 3, турбинное колесо 19, жестко связанное с турбинным валом 27, две чаши 15, 20, жестко связанные с насосным колесом.

Рис. 76. Гидропривод вентилятора холодильной камеры: 1—крышка насоса, 2—шпонка, 3—вал ведущий; 4, 11, 12, 22—фланцы; 5—ротор лопастного насоса, 6—пружина; 7, 48, 58—гайки; 8, 25, 29, 32—гнезда подшипников; 9—фланец насоса; 10—кольцо пружинное; 13, 14, 35, 38—40—кольца, 15, 20—чаши; 16, 21, 28, 46—крышки; 17—болт призонный, 18—сапун, 19—колесо турбинное; 23—вал; 24—кольцо маслоотбойное; 26—прокладка, 27—вал турбинный; 30, 31—шестерни г = 2Ъ, г = 48, 33—колесо насосное; 34—корпус; 36—ступица; 37-*-вал-шестерня, 41—статор; 42—штифт; 43—лопасть; 44—пальцы; 45—трубка черпаковая; 47, 61, 62— штуцера; 49 — шпилька; 50—стакан; 51 — болт; 52, 56—манжеты; 53, 55, 66—втулки; 54—рейка; 57—шплинт; 59, 63—трубопроводы; 60—шестерня; 64—трубка; 65—фильтр

Рис. 77. Гидропривод вентилятора, разрез по механизму привода черпаковых трубок (обозначения смотри на рис. 76)

Чаши вращаются совместно с насосным колесом и образуют так называемый колокол, который удерживает рабочую жидкость (масло) в гидроаппарате при передаче вращающего момента во всем диапазоне его изменения. Насосное и турбинное колеса, расположенные на одной оси и обращенные радиальными лопатками друг к другу, образуют совместно кольцевую полость, разделенную лопатками —40 шт. на насосном колесе и 42 шт. на турбинном колесе. Механическое движение от насосного колеса к турбинному передается маслом за счет его вращающего движения в межлопаточном пространстве, т. е. в плоскости поперечной кольцевой полости (в плоскости рисунка). Турбинное колесо получает вращение под напором масла, создаваемым насосным колесом в ту сторону, что и насосное колесо, но имеет отставание, называемое скольжением, величина которого зависит от степени заполнения круга циркуляции маслом. Через кольцевой зазор Ч между турбинным и насосным колесами, отверстия Р, просверленные в периферийной фланцевой части насосного колеса, масло попадает в кольцевую полость, образованную чашей 15 и тыльной поверхностью насосного колеса, где располагаются две черпаковые трубки 45 механизма регулирования степени заполнения круга циркуляции. От положения черпаковых трубок, их торцовых сопловых сечений зависит круг циркуляции. Положение сопловых сечений определяет механизм привода, состоящий из вала-шестерни 37, имеющей на одном наружном конце нарезанные зубья, а на другом — насаженную по напряженной посадке со шпонкой шестерню 60 с наружными зубьями, которые в собранном гидроприводе находятся в зацеплении с зубьями рейки 54, перемещающейся от штока сервопривода.

Вал-шестерня 37, получая угловые перемещения от рейки 54, соответственно передает движение шестерням, которые, поворачиваясь на пустотелых пальцах 44, разворачивают приваренные к ним черпаковые трубки 45.

Рабочей жидкостью гидромуфты, как было уже отмечено, является масло системы дизель-генератора. В круг циркуляции гидромуфты масло поступает под давлением от системы через штуцер 62, ввинченный в коническое резьбовое отверстие фланца 12 и далее через отверстие в ступице в кольцевую выточку П вала-шестерни 37. Из кольцевой выточки по радиальным и продольному отверстиям в валу 3 масло попадает в круг циркуляции гидромуфты. В процессе регулирования и на номинальном режиме работы гидромуфты масло из круга циркуляции откачивается черпаковыми трубками 45 через отверстия в пальцах 44, два канала Ф и кольцевую наружную проточку К ступицы 36, а затем через канал во фланце 12, трубку 64, ввинченную в резьбовое отверстие фланца, в масляную систему дизель-генератора.

В случае отказа элементов системы автоматического управления режимом работы гидромуфты в конструкции гидропривода вентилятора предусмотрен механизм, позволяющий вручную управлять положением черпаковых трубок и задать с его помощью любой режим работы вентилятора холодильника. Достигается это свинчиванием гайки 48 со стакана 50. Гайка 48 связана с рейкой 54. При свинчивании гайки рейка, перемещаясь, передает движение валу-шестерне 37, которая выводит черпаковые трубки на больший диаметр расположения сопел, что уменьшает степень заполнения круга циркуляции и соответственно снижает частоту вращения турбинного вала.

С помощью этого механизма черпаковые трубки можно развести на наибольший диаметр их расположения, что будет соответствовать нулевой степени заполнения круга циркуляции и соответственно минимальным остаточным оборотам колеса вентилятора в пределах 70—100 об/мин при номинальной частоте вращения коленчатого вала дизель-генератора 850 об/мин.

Перемещение рейки 54 (см. разрез В—В) как от автоматического привода, так и от механизма ручного привода составляет 42 мм. Размеру «42» соответствует наименьший диаметр Д расположения сопел черпаковых трубок, равный 206 мм (сечение Б — Б). Наибольший диаметр расположения черпаковых трубок соответствует перемещению рейки L=42±l мм. В этом случае зазор Ж (сечение Б — Б) должен быть в пределах 3—4 мм, что достигается регулировкой при сборке механизма привода черпаковых трубок.

Конструктивные особенности. Гидропривод вентилятора, представленный на рис. 76, 77, изготавливается для тепловозов ТЭ ЮЛ, ТЭ10В, ТЭ10М с 1970 г. Эта конструкция гидропривода вентилятора отличается от гидропривода, устанавливаемого до 1970 г., усовершенствованными сборочными единицами, значительно уменьшенной массой. Вследствие изменения конструкции гидроаппарата снижены остаточные обороты турбинного вала. Масса гидропривода по сравнению с прежней конструкцией снижена на 220 кг и составляет 352 кг. Необходимо иметь в виду, что за период серийного производства гидропривода с 1970 г. в его конструкцию был внесен ряд изменений, направленных на повышение эксплуатационной надежности как самого узла, так и узлов, взаимодействующих с ним. К таким изменениям относится: усиление подшипникового узла ведущего вала, где вместо ранее устанавливаемого шарикового подшипника № 312, который насаживался внутренним кольцом на промежуточную втулку с буртом, а затем совместно с гнездом 8 на ведущий вал, устанавливается непосредственно на вал шариковый подшипник, имеющий большую долговечность; с целью повышения долговечности и ремонтопригодности привода вспомогательных механизмов карданные валы заменены на валы с пластинчатыми муфтами и в этой связи ведущий фланец 4 установлен трехлепестковой формы под соединение с пластинчатой муфтой вместо круглого для соединения с фланцем кардана; проведены изменения по усилению центровочных выступов на фланце насоса; усилена площадь сечения алюминиевого фланца 12 в месте сопряжения по радиусу его ступичной части с фланцевой.

Гидропривод вентилятора состоит из четырех основных сборочных единиц: вала ведущего 3 с механизмом регулирования, вала турбинного 27, вала вертикального 23, насоса маслооткачивающего и ряда деталей, собираемых в корпус 34. Корпус представляет собой механически обработанную отливку из серого чугуна. Корпус имеет две полости. В первой при сборке монтируется гидроаппарат, во второй — конический редуктор с валами. Эти полости соединены отверстием для сбора масла в полости. Часть корпуса, образующая полость редуктора, имеет прямоугольную коробчатую форму, на боковой вертикальной стенке которой имеется прямоугольный проем — люк для регулировки и проверки качества зацепления конических шестерен при сборке редуктора. После окончательной сборки гидропривода люк закрывают крышкой 46 (см. сечение Г — Г) с прокладкой и затягивают гайки на шпильках. Другая часть корпуса, образующая полость гидроаппаратов, имеет цилиндрическую форму, переходящую внизу в прямоугольную. Наружная поверхность этой части корпуса имеет сбоку приливы, образующие после механической обработки лапы для крепления гидропривода на фундамент при установке на раму тепловоза. Вверху корпус имеет прилив, в котором выполнен люк-проем, служащий для соединения чаши 15 с насосным колесом при сборке и креплении ее гайками на шпильках. После сборки гидропривода люк-проем закрывают крышкой 16 с уплотнительной прокладкой и затягивают гайки на шпильках. Для соединения с атмосферой и уравнивания давлений в верхней точке корпуса установлен сапун 18. Внизу этой части корпуса имеется отверстие с резьбой, в котором через переходную стальную втулку с наружной и внутренней резьбой укреплен сетчатый фильтр 65 (см. сечение А — А) с трубопроводом 59 всасывания к масляному насосу.

Для подъема и транспортировки как корпуса, так и гидропривода в корпусе имеются два прилива с отверстиями для рым-болтов. Торцы расточек корпуса имеют отверстия с резьбой для закрепления гнезд с подшипниками и фланца 12, несущего ведущий вал 3, с механизмом регулирования и масляным насосом.

Ведущий вал 3 с механизмом регулирования и масляным насосом смонтирован в расточке фланца 12, закрепляемого на торце корпуса. Фланец 12 представляет собой механически обработанную отливку из алюминия марки АЛ9. Ступичная часть фланца имеет сквозную расточку, в которую с одной стороны впрессована по напряженной посадке и крепится на болтах ступица 36 с вмонтированным полым валом-шестерней 37, роликовым подшипником, фланцем шестерней 60 с другой стороны — подшипниковый узел с гнездом 8, шариковым подшипником и масляным насосом.

В поперечной расточке фланца смонтированы рейка 54, втулки 53, 55, являющиеся опорами для рейки, втулки с уплотнительными манжетами 52, 56. К обработанному приливу фланца прикреплен стакан 50 с механизмом ручного привода черпаковых трубок, включающий пружину, гайку 48, шпильку 49 с гайкой. Кроме того, фланец имеет три отверстия с резьбой, в которые ввернуты штуцер 62 для подвода масла в круг циркуляции гидромуфты, трубка 64 для отвода масла из круга циркуляции через черпаковые трубки, штуцер 61 для подвода масла на смазывание подшипника. Ведущий вал с механизмом регулирования включает непосредственно ведущий вал 3, опирающийся на подшипники, ведущий фланец 4, колесо насосное 33, выполненное отливкой в кокиль из алюминия, крепящееся на фланцевой части ведущего вала призонными болтами 17, алюминиевой чаши 15, центрирующейся на бурте насосного колеса и крепящейся совместно с алюминиевой чашей 20 шпильками и гайками при сборке вала с механизмом регулирования и корпусом.

На пальцах 44 (сечение Б — Б), вставленных по посадке скольжения в расточки ступицы, установлены черпаковые трубки 45. Вал турбинный 27 состоит из вала, конической шестерни 30 с круговыми зубьями (торцовый модуль 6, 5, число зубьев 23), подшипниковых узлов с шариковым подшипником и гнездом подшипника, роликовым подшипником.

Вертикальный вал 23 редуктора гидропривода представляет собой отдельную сборку, состоящую из вала, напрессованной на вал конической шестерни 31 с круговыми зубьями (торцовый модуль 6, 5, число зубьев 48), подшипникового узла, включающего шариковый подшипник, роликовые подшипники, гнездо подшипников 25, представляющего собой механически обработанную отливку из серого чугуна, бесконтактного лабиринтного уплотнения, состоящего из маслоотбойного кольца 24, напрессованного на фланец, крышки 21 с лабиринтной канавкой, фланца 22, напрессованного на вал по горячей посадке. Фланец имеет маслосгонную ленточную резьбу правого направления.

Смазывание гидропривода вентилятора происходит от масляной системы дизель-генератора. Для подвода масла к подшипникам ведущего вала во фланце 12 имеется штуцер 61, к которому подсоединяется трубопровод от масляной системы. Через штуцер масло для подшипника попадает в полость между гнездом 8 этого подшипника и торцом ступицы 36 и наполняет эту полость до уровня, обеспечивающего попадание масла на дорожку качения наружного кольца подшипника. В ступице 36 и фланце выполнено отверстие (на рисунке показано условно), обеспечивающее попадание масла из полости к подшипнику.

Для подвода масла из масляной системы на смазывание подшипников вертикального вала, а также подшипников турбинного вала в гнезде подшипников 25 просверлено несколько каналов диаметром 3 и 10 мм. Масло по трубопроводу от системы через ввинченный в корпус штуцер 47 (см. сечение Г—Г), совмещенные радиальные отверстия в корпусе и гнезде подшипников 25 под давлением попадает в кольцевую внутреннюю проточку гнезда и по вертикальному отверстию в гнезде (не показано на рисунке) попадает в полость над подшипниками и, просачиваясь через них таким образом, смазывает подшипники вертикального вала. Чтобы не допустить утечку масла через лабиринтное уплотнение вала, в случае его накопления в полости над подшипниками через 120° от входного отверстия на подачу смазки по направлению вращения вала в гнезде имеется вертикальное отверстие диаметром 10 мм, предназначенное для сброса излишков масла в корпус редуктора. Подшипники турбинного вала смазываются маслом, поступающим через отверстия в гнезде подшипников. От этих отверстий и через подшипники вертикального вала масло попадает на смазывание контакта зубьев конических шестерен.

В процессе работы гидропривода вентилятора масло после смазывания всех подшипников, контакта зубьев конических шестерен просачивается через уплотнения каналов питания круга циркуляции гидромуфты, скапливается в нижней части корпуса и через фильтр 65 (см. сечение А — А) откачивается лопастным насосом в масляную систему дизеля, в его поддон. Лопастной откачивающий насос установлен на шпильках фланцем к фланцу гнезда подшипника 5. Его корпусные детали: крышка / (рис. 78), статор 2„ фланец З концентрично охватывают ведущий вал гидропривода непосредственно за ведущим фланцем. Ротор насоса 4 по ходовой посадке центральным отверстием диаметром 50 мм насажен на ведущий вал на шпонке. В двух пазах ротора установлены диаметрально противоположно лопасти 5, имеющие центрирующие отверстия диаметром 7, 5 мм для пружин 6. Такого же размера имеются центрирующие отверстия и в роторе. Пружины служат для поджатия лопастей к рабочей поверхности статора при начальном движении вала и создания всасывающего действия насоса. Корпусные детали насоса: крышка статор 2, фланец изготовлены из антифрикционного чугуна марки АСЧ-1 и соединены восьмью шпильками 7, а окончательно зафиксированы двумя штифтами 6\ Эксцентриситет, равный 2, 5 мм, необходимый для получения всасывающего и нагнетательного объемов насоса, получен за счет смещения центра расточки отверстия статора по отношению к концентричному положению отверстий под соединительные шпильки и штифты. Рабочие поверхности крышки насоса, фланца насоса и статора по торцовым сопрягающимся поверхностям имеют высокий класс шероховатости и притираются на плите для получения надежной герметичности в соединении. Ротор насоса изготовлен из стали марки 12ХНЗА или 20Х и по торцовым поверхностям трения, наружному диаметру, поверхностям трения с лопастями цементирован и термо-обработан до твердости большей или равной НРХ 50, глубина цементированного слоя в готовой детали должна быть 0, 6—1, 0 мм. Лопасти 5 изготовлены из стали 38ХС или 40Х и термообработаны до твердости, равной или больше НРчС 50, а пружины 6, поджимающие лопасти насоса, — из специальной проволоки диаметром 0, 8 мм с числом рабочих витков 12. В свободном состоянии размер пружины по высоте 25 мм, при сжатии пружины до 17 мм она должна развивать усилие 20 Н. Наружный диаметр пружины 6, 8 мм. В статоре насоса в его средней части выполнены фрезерованием углубления, образующие всасывающую В и нагнетательную Н полости насоса, соединенные каналами 9 с отверстиями, имеющими резьбу, в приливах крышки В отверстия крышки ввинчиваются штуцера для соединения с всасывающим и нагнетательным трубопроводом масляной системы. Насос работает следующим образом: ротора получает вращение вместе с ведущим валом гидропривода от коленчатого вала дизель-генератора и вращаясь с лопастями 5 создает разрежение во всасывающей полости В, куда засасывается через фильтр масло по трубопроводу из корпуса гидропривода и далее лопастями перекачивается в нагнетательную полость Н, а затем по трубопроводу в поддон дизеля. Подача насоса при выбранной площади сечения всасывающего трубопровода диаметром 17 мм с толщиной стенки 2 мм при температуре масла 60—80 °С составляет 0, 0037—0, 0042 м3/с (22—25 л/мин). Указанной подачи насоса вполне достаточно для обеспечения нормальной работоспособности гидропривода на всех режимах.

Обеспечить работоспособность и подачу детали насоса могут при изготовлении с требуемой точностью. Собирают насос в специальном приспособлении, которое позволяет обеспечить сборку его деталей: крышки 1, статора 2, фланца и их фиксацию штифтами таким образом, чтобы при установке насоса на гидропривод зазор между статором и ротором был в пределах 0, 3—0, 5 мм. Суммарный зазор между торцовыми поверхностями крышки, фланца и ротора в пределах 0, 075—0, 16 мм.

Как показали испытания, изменение радиального зазора между статором и ротором в пределах 0, 15—0, 5 мм практически не влияет на подачу иасоса. В связи с изложенным при сборке насоса не обязательно стремиться обеспечить этот зазор наименьшим. Более того, на тепловозах с карданным приводом вспомогательных механизмов в случае неправильной установки механизмов, когда не обеспечена параллельность фланцев промежуточной опоры и гидропривода, что приводит к появлению сил, изгибающих вал, наименьший радиальный зазор в насосе может привести к задирам поверхностей статора и ротора и в итоге вывести насос из строя.

В нижней части корпуса гидропривода установлен фильтр 65 (см. рис. 77, сечение А—А) резьбовым концом в стальную втулку, которая ввинчивается в отверстие корпуса на цинковых белилах или сурике для герметичности соединения. Фильтр представляет собой полый болт с осевым и радиальным отверстиями, к которому приварен стальной каркас с напаянной стальной или латунной сеткой, имеющей размер ячейки 1, 5—2 мм. При установке фильтра между ниппелем всасывающего трубопровода и корпусом гидропривода, а также Под головку полого болта фильтра установлены уплотнительные мед-но-асбестовые прокладки.

Обкатка гидропривода. Качество сборки гидропривода вентилятора и его соответствие требуемой технической характеристике проверяют обкаткой на специальном стенде. Обкатку перед установкой на тепловоз проходит каждый собранный гидропривод. Обкаточный стенд позволяет имитировать условия работы гидропривода на режимах, указанных в табл. 3, соответствующих условиям работы узла на тепловозе.

Ведущий вал приводится электродвигателем, а ведомый вертикальный вал через механическую передачу, состоящую из редукторов и валопровода, загружается генератором, потребляющим мощность 125 кВт при частоте вращения вертикального вала гидропривода 1165 об/мин. На стенде обеспечивается и контролируется манометрами давление питания круга циркуляции гидромуфты в пределах 0, 07—0, 12 МПа системы смазки 0, 03—0, 07 МПа.

Температура масла на выходе из круга циркуляции гидромуфты и от маслоотка-чивающего насоса контролируется термометрами и при нормальной работе гидропривода под полной нагрузкой при окружающей температуре 20—30 «С не должна превышать 90 °С. Местный нагрев подшипниковых узлов не выше 90 °С. Более высокая температура масла на выходе из круга циркуляции гидромуфты или от масло-откачивающего насоса, равно как и местный нагрев подшипниковых узлов, свидетельствует о ненормальной работе гидропривода, что может быть связано с переполнением круга циркуляции, более тугими, чем напряженная, посадками подшипников на вал или посадкой наружных колец подшипников в гнезда с натягом вместо посадки скольжения. В случае выявления и устранения дефектов с разборкой гидропривода вторично обкатывают его на всех режимах. Во время обкаточных испытаний контролируют работоспособность конического редуктора гидропривода. При нормальной работе редуктора наблюдается плавный ход, нет стуков, прерывистого шума и ударов.

После приемки на стенде и оформления технологического паспорта испытаний гидропривода передают на окраску наружных поверхностей и после сушки на сборку тепловоза или консервацию для отправки на склад запасных частей. Необходимо отметить, что в результате конструкторской доводки гидропривода, совершенствования технологии изготовления узлов и деталей, улучшения контроля при приемке случаи выявления недостатков при обкаточных испытаниях весьма редки.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *