Что такое tx burst в настройках роутера
Перейти к содержимому

Что такое tx burst в настройках роутера

  • автор:

Tx burst — что означает этот параметр в настройках роутера?

Настройка tx burst является важной функцией в роутерах и используется для оптимизации передачи данных. Tx burst (transmit burst) позволяет отправлять данные с высокой скоростью путем создания временного «буфера» для отправки пакетов. Это особенно полезно при передаче больших объемов данных, таких как видео или файлы, по сети.

Когда функция tx burst включена, роутер отправляет пакеты данных в формате «взрывом», что позволяет значительно увеличить скорость передачи данных по сравнению с обычным режимом. Однако, это может потребовать больше ресурсов сети и может привести к потере некоторых пакетов данных. Поэтому важно настроить эту функцию с учетом особенностей вашей сети.

Кроме того, функция tx burst может быть настроена с помощью параметров, таких как размер буфера и время ожидания перед отправкой следующего пакета. Выбор оптимальных значений этих параметров также может повысить эффективность передачи данных. Однако, необходимо учитывать совместимость с другими устройствами в сети и общую пропускную способность вашего интернет-соединения.

Основные принципы работы роутера

В основе работы роутера лежит принцип маршрутизации. Роутер получает пакет данных, содержащий информацию о передаваемом сообщении, и принимает решение о том, в какую сеть он должен быть перенаправлен. Для принятия этого решения роутер анализирует адрес назначения пакета и информацию о сетях, с которыми он связан.

Роутеры делятся на два основных типа – статические и динамические. Статические роутеры используют заранее заданные таблицы маршрутизации, которые определяют, какой путь должен быть выбран для каждого пакета данных. Динамические роутеры, в свою очередь, обновляют таблицы маршрутизации автоматически на основе информации, полученной от других устройств в сети.

В процессе обработки пакетов данных роутеры также могут выполнять другие функции, такие как фильтрация трафика и перевод сетевых адресов (NAT). Фильтрация трафика позволяет роутеру блокировать определенные типы данных или пакеты, что повышает безопасность сети. Перевод сетевых адресов позволяет множеству компьютеров внутри локальной сети использовать один публичный IP-адрес для обмена данными с интернетом.

Использование роутера позволяет объединять различные локальные сети, создавая единую сетевую инфраструктуру. Это делает возможным обмен данных между компьютерами в рамках одной сети или между разными сетями, а также обеспечивает доступ к ресурсам сети, таким как принтеры или общие файлы.

В целом, основные принципы работы роутера включают маршрутизацию данных между сетями, обработку пакетов данных и выполнение дополнительных функций, таких как фильтрация трафика и перевод сетевых адресов. Роутеры играют важную роль в сетевой инфраструктуре, обеспечивая эффективную передачу данных и связность между компьютерами и сетями.

Что такое tx burst?

Использование параметра tx burst позволяет управлять скоростью передачи данных и избегать перегрузок сети. Роутеры и коммутаторы осуществляют передачу данных пакетами, и задание оптимального значения tx burst позволяет контролировать количество пакетов, передаваемых в секунду.

Параметр tx burst может быть полезен при настройке сетей с различными требованиями к пропускной способности. Например, при высоких требованиях к скорости передачи данных, значение tx burst можно увеличить, чтобы увеличить количество передаваемых пакетов. Однако, важно помнить, что увеличение tx burst может привести к увеличению нагрузки на сеть и возникновению задержек в передаче данных.

Настройки роутера для повышения скорости передачи данных

tx burst — это параметр, отвечающий за максимальный объем данных, который может быть передан в одном блоке сигнала. Когда установлено значение «tx burst», роутер передает данные в более короткое время, что увеличивает суммарную скорость передачи.

Однако, необходимо учесть, что увеличение значения «tx burst» может привести к увеличению задержки передачи данных и потере пакетов. Поэтому, оптимальное значение параметра «tx burst» должно быть выбрано с учетом конкретных условий и требований сети.

Для настройки значения «tx burst», необходимо выполнить следующие шаги:

  1. Войти в настройки роутера через веб-интерфейс.
  2. Найти раздел сетевых настроек или настройки интерфейса, где располагаются параметры передачи данных.
  3. Найти параметр «tx burst» и выбрать оптимальное значение в соответствии с требованиями сети.
  4. Сохранить настройки и перезагрузить роутер.

Важно помнить, что изменение настроек роутера может повлиять на его работу и требует аккуратности и знания основ сетевых технологий.

Что такое tx burst в настройках роутера

Tx Power — это мощность передатчика Wi-Fi. Обычно задается либо в милливаттах, либо в dBm.

Какой канал лучше выбрать для wi fi 5 Ггц?

В диапазоне 5 ГГц доступно 17 рабочих каналов. Рекомендуем выбирать канал с меньшим номером в диапазоне от 36 до 64 (чем ниже частота, тем лучше проникающая способность сигнала).20 мая 2020 г.

Что такое WMM в настройках роутера?

Wi-Fi Multimedia (WMM), или Wireless Multimedia Extensions (WME, беспроводные мультимедийные расширения) — протокол, основанный на стандарте IEEE 802.11e, для обеспечения основных функций QoS для беспроводных сетей IEEE 802.11.

Как снизить уровень сигнала Wi Fi?

В настройках перейдите на вкладку Беспроводная сеть – Профессионально (сверху). В самом низу страницы есть пункт Управление мощностью передачи Tx power. Напротив него, есть поле, где в процентах можно прописать мощность сигнала (максимум 100%), или же регулировать с помощью ползунка.

Что такое Tx Burst?

Tx Burst включает непрерывный режим передачи для увеличения пиковой скорости передачи данных от интернет-центра к клиентам 802.11n/ac (т. … Эффективность работы данного режима зависит от возможностей беспроводного адаптера клиента. Например, на некоторых адаптерах скорость Интернета для Wi-Fi-устройств может снизится.

Что такое dBi в роутере?

Единица измерения усиления антенн относительно «эталонной» антенны.

Какая ширина канала для 5 Ггц?

Что касается работы мобильных устройств в диапазоне 5 ГГц, то по умолчанию в настройках роутера установлено значение ширины канала 20/40/80 МГц. Если вы заметили снижение скорости при работе в сети 5 ГГц, рекомендуем установить значение ширины канала 20/40 МГц.

Как узнать поддержку WIFI 5 Ггц?

Узнать, поддерживает мобильное устройство Wi-Fi 5 ГГц или нет, можно несколькими способами:

  1. Изучить спецификации гаджета. В разделе с информацией о сети должна быть пометка, что устройство работает со стандартом 802.11ac. …
  2. Узнать поддержку Wi-Fi 5 ГГц можно в настройках устройства. …
  3. Приложение Wi-Fi Info.

Какие телефоны поддерживают 5 Ггц?

Ниже – лучшие смартфоны с поддержкой Wi-Fi 5 ГГц.

  • 1 место – Honor 10. Новый флагман от Huawei – Honor 10 – появился совсем недавно и успел собрать положительные отзывы. …
  • 2 место – Apple iPhone X. …
  • 3 место – Xiaomi Mi Note 3. …
  • 4 место – Huawei P20 Lite. …
  • 5 место – Nokia 7 Plus.

Как включить WMM на роутере?

В стандартных параметрах настроек маршрутизаторов этот режим не активен. С целью его активации в русифицированном веб-интерфейсе роутера следует установить отметку в графе «Включить WMM». Если меню настроек на английском языке, то наименование этой графы отображается как «Enable WMM».

Для чего кнопка WPS в роутере?

Защищенная настройка Wi-Fi (Wi-Fi Protected Setup — WPS) – это функция, поддерживаемая многими маршрутизаторами. Она предназначена для облегчения процесса подключения компьютера или другого устройства к защищенной беспроводной сети.

Какая ширина канала Wi Fi лучше?

Если вы живете в многоквартирном доме и вокруг вас определяется более 3 сетей wi-fi, то скорее всего в вашем случае лучше установить значение ширины канала в 20 Mhz, так как чем шире канал, тем больше на него воздействуют помехи от работы других вай фай сетей. Лучше иметь более медленный канал, но стабильный.

Tx burst zyxel что это

Практически во всех выпускаемых ныне беспроводных адаптерах стандарта 802.11g можно встретить суффиксы «super G», «turbo», «plus» и т.д. Причем суффиксами дело обычно не ограничиваются. Производители (точнее их маркетологи) красочно рисуют на коробках цифры 108, а некоторые — аж 125 Мбит/сек.

125 — звучит заманчиво. Неужели беспроводные адаптеры работают быстрее старого доброго Fast Ethernet по проводам? Может ну их… в баню, эти «древние» Fast Ethernet адаптеры? Выкидываем надоевшие кабели и да здравствует радиоезернет? ��

Но, как говорится, семь раз отмерь, один — отрежь. Что в нашем случае означает, что не мешало бы поподробнее узнать, что же это за такие загадочные технологии, как они работают и какие на самом деле скорости обеспечивают (и самое главное — при каких условиях). Другими словами, не забываем анекдот про физиков и из сферических коней в вакууме. А так же делаем скидку маркетологам на то, что для них важнее всего — продать решения своей компании.

Различных вариантов «разгона» стандартного 802.11g существует довольно много. Точнее — у каждого производителя чипов оно свое (по крайней мере — называется по-разному). К сожалению, не все производители объясняют, что именно представляют из себя их технологии. Информацию по технологиям мне удалось найти лишь у компании Atheros и Texas Instruments. Но наиболее информативный ресурс оказался у Atheros — у них даже есть отдельный сайт, посвященный их технологиям Super G и Super AG.

Собственно, бОльшая часть статьи — это компиляция информации с сайтов Atheros и Texas Instruments и по мелочи — из других источников.

Переходим непосредственно к технологиям.

Для начала посмотрим на «чистый» 802.11g. Максимальная пропускная способность в этом режиме — 54 Мбит/сек. Думаю, большинство читателей знает, как перевести мегабиты в мегабайты? Правильно — делим мегабиты на восемь и получаем скорость 6.75 Мбайт/сек.

Но внимательные читатели (кто смотрит в статьях не только предисловие и выводы, а иногда пробегается, хотя бы одним глазом, по диаграммам замера скоростей) знают, что в обычном 802.11g режиме скоростей более

25 Мбит мы не получали. Так это же только половина от 54 Мбит! Куда делась вторая половина? Куда — это тема отдельной статьи, отмечу лишь, что на пользовательские данные действительно приходится примерно половина (в лучшем случае) пропускной способности канала.

Это первая плохая новость. Есть и вторая. Радиоволны (собственно, с помощью них и передается информация в беспроводных сетях) передаются во все стороны от источника сигнала (рассматриваем общий случай). Т.е. передающего слышат все. Эти «все» могут принимать данные или не принимать, это не важно. Главное — они не могут в этот момент что-либо передавать на той же частоте. Точнее говоря, попытаться то они могут, но сигналы обоих источников наложатся друг на друга, в результате чего информационная составляющая будет искажена и потеряна. Другими словами, в беспроводных сетях одновременно может передавать только один источник из нескольких, работающих на одной и той же частоте. Т.е. принцип рации — сначала говорим, потом молчим и слушаем.

Таким образом, щедро выделенные нам

25 Мбит делятся на всех участников беспроводной сети. Если количество клиентов составляет 5 хостов, то в момент интенсивной передачи данных с каждого, на одного придется канал пропускной способностью примерно 5 Мбит (а на самом деле даже чуть меньше).

Есть и третья плохая новость. Вторая «плохая новость» насчет «5 Мбит на 5 хостов» верна лишь в случае Ad Hoc сети, т.е. без точки доступа. Если брать более общий случай с точкой доступа, то эти жалкие 5 мбит придется поделить еще на два. Ведь в Infrastructure режиме беспроводной сети (с участием точки доступа) любой обмен с клиентами проходит через точку доступа. А она сначала должна принять данные, а потом ретранслировать их к получателю. В результате получаем по 2 с хвостиком мегабита на брата.

Теперь вернемся к цифрам 108 и 125, которые так любят крупным шрифтом рисовать на коробках производители. Ну, вы уже все поняли, да? ��

Смело делим на два (про сферического коня чуть позже). Получаем максимум 60мбит в случае одного клиента и соответственно в n-цать раз меньше, в случае N клиентов.

Для тех, кому надо было лишь выяснить, пора ли выкидывать провода или «еще погодить», дальнейшую часть статьи можно не читать. Ответ — выкидывать пока рано. Как минимум, надо дождаться WiMAX.

Теперь перейдем к более детальному рассмотрению рассмотрению технологий увеличения пропускной способности беспроводных сетей по сравнению со стандартным 802.11g режимом.

Полагаю, у всех производителей все их плюсы, турбо и т.д. представляют собой то же самое, что и у Atheros с TI, но с другим названием. Но детали реализаций могут различаться, поэтому не факт, что технологии различных производителей совместимы друг с другом.

Технология Atheros для 802.11g носит название Super G (есть еще одна — Super AG, это тоже самое, но для стандарта 802.11a, т.е. для сетей на 5 ГГц). Atheros Super G позволяет увеличить пропускную способность до 108 Мбит/сек. И, как честно заявляет Atheros, для пользователя скорость может достигать 60 Мбит.

Увеличение производительности достигается несколькими способами:

Atheros Super G / Super AG технологии:
  • посылка большего количества кадров за тот же временной интервал
  • увеличение пропускной способности за счет удаления части накладных расходов
  • компрессия данных в реальном времени
  • Lempel Ziv компрессия
  • увеличение пропускной способности за счет предварительного сжатия информации
  • центральный процессор компьютера не задействуется
  • агрегация (объединение) кадров (размер кадров до 3000 байт) и манипуляции с временными интервалами
  • увеличение пропускной способности за счет передачи большего количества данных в одном кадре и удаления межкадровых временнЫх пауз
  • технология, аналогичная транкингу в ethernet-сетях, т.е. задействование одновременно двух каналов для передачи
  • постоянный мониторинг окружения и подстройка скорости под текущие нужды
  • максимальное увеличение пропускной способности за счет использования нескольких (двух) каналов передачи одновременно

У себя на сайте Atheros приводит красочную диаграмму, показывающую влияния различных технологий на скорость передачи данных:

В базовом режиме 802.11g или 802.11a, в котором все расширенные технологии отключены, можно получить скорость до 22 Мбит (чистых, т.е. доступных пользователю). Добавляя технологии, которые возможно будут в будущем стандарте 802.11e (Bursting, Fast Frames, Compression), можно увеличить скорость до 40 Мбит включительно. Активируя Dynamic Turbo режим, т.е. задействуя два канала под передачу данных, можно довести скорость до теоретического максимума в 60 Мбит.

Разумеется, приведенные цифры — это лишь максимально возможная скорость в данном режиме работы (тот самый сферический конь в вакууме). В реальности все будет зависеть от таких условий, как удаленность клиента от точки доступа, количество одновременно работающих клиентов, радиообстановка в месте, где расположена беспроводная сеть и так далее.

У Texas Instruments технологии повышения производительности носят название G-Plus. Часть из них похожа на технологии Atheros, часть — присуще только TI.

Texas Instruments G-Plus технологии:
  • объединение данных из нескольких пакетов — в один (размер пакета — до 4000 байт)
  • увеличение пропускной способности за счет удаления служебной информации заголовков «лишних» кадров и удаления времени межкадрового ожидания
  • аналогично технологии от Atheros
  • аналогично технологии от Atheros

Подробно остановимся на каждой из перечисленных технологий — bursting, compression, fast frames, dynamic turbo. Примечательно то, что все четыре технологии работают независимо друг от друга, тем самым добиваясь максимально возможной производительности одновременно несколькими способами.

1. Bursting.

Frame Bursting — технология, заложенная в предварительный вариант стандарта 802.11e QoS. Frame Bursting позволяет увеличивать пропускную способность линка при обмене (точка-точка) между 802.11a, b или g устройствами за счет уменьшения накладных расходов, возникающих при передаче данных в беспроводных сетях. Причем хорошие результаты достигаются как в гомогенных (однородных), так и в смешанных беспроводных сетях.

На рисунке 2 приведен пример стандартной передачи (without bursting).

В режиме стандартной передачи данных мы наблюдаем процесс передачи двух кадров (frame1 и frame2) во времени от источника Source к получателю Destination. Процесс передачи данных поделен на временные интервалы (по оси X — ось времени). Так как в любой момент времени передавать может лишь один источник, то каждая станция слушает эфир в течении времени DIFS (Distributed InterFrame Space), если она не услышала передачи другой станции, значит эфир свободен, можно передавать кадр. После передачи кадра (frame1), станция-передатчик ждет подтверждения об успешном приеме от получателя. Получатель обязан отослать подтверждение (ack), которое он отсылает практически сразу, после ожидания короткого промежутка времени SIFS — Short InterFrame Space (если подтверждения не было, то получатель считает, что кадр не был принят и должен перепослать его заново). После получения подтверждения передатчик опять обязан выждать интервал времени DIFS и только потом (если эфир по-прежнему свободен) начать отсылку второго кадра frame2. И так далее.

Таким образом, кадры ожидания DIFS отнимают достаточно существенную часть пропускной способности беспроводной сети.

Теперь посмотрим на картину передачи при использовании технологии Frame Bursting:

В этом режиме (рисунок 3), источник и получатель монопольно [по очереди] занимают канал под свою передачу. После передачи кадра frame1 и получения подтверждения об успешном приеме оного, передатчик не ждет положенный интервал времени DIFS. Передатчик выжидает лишь короткий временной интервал SIFS, после чего передает второй кадр данных и так далее. Тем самым, передатчик не дает возможности начать передачу другим станциям — им приходится ожидать окончания общего периода такой burst-передачи.

Разумеется, общий интервал передачи данных в таком режиме ограничен (а то передача нескольких гигабайтов данных полностью бы парализовала работу остальных клиентов той же беспроводной сети). Но удаление интервала DIFS позволяет за тот же период времени передать существенно бОльшее количество данных, тем самым экономя пропускную способность канала, т.е. увеличивая общую скорость передачи данных.

Atheros заявляет, что все ее продукты данную технологию поддерживают. Но очевидно, что устройства других производителей, в которых эта технология не встроена, могут и не понять такой «разрывной» режим работы. Поэтому, если подтверждение на посланный в начале burst-режима пакет не получено получателем, передатчик отключает bursting и переходит в базовый режим работы.

Реализация Bursting у TI аналогична технологии Atheros. TI приводит следующую картинку, иллюстрирующую работу их технологии (рис 4):

TI тоже удаляют «длинный» временной фрейм ожидания, тем самым сокращая накладные расходу на передачу.

Информация о совместимости burst-технологий в реализациях от TI и Atheros на сайтах обеих компний отсутствует.

Подобная «bursing» технология, вероятно, присутствует и у других производителей. Но Atheros пошла дальше и расширила ее до «dynamic bursting». По ее заверениям, эта технология особенно эффектна в сетях с количеством работающих беспроводных клиентов больше единицы.

К примеру, в беспроводной сети две станции, одна расположена близко к точке доступа, другая удалена от нее. Разумеется, дальний клиент работает с точкой доступа на более низкой скорости (из-за расстояния). Поэтому для передачи данных определенного размера (для ближайшего клиента) ему потребуется больше времени, чем ближайшему — для приема этих данных. В этом случае активация bursting для дальней станции позволит ей сократить время передачи порции данных и, как ни странно, это же позволит ближайшей станции еще быстрее эти данные принять (так как она меньше будет ожидать на линии освобождения эфира). Интервалы, на которые клиенты могут занять эфир «burst»-передачей, также зависят от удаленности (точнее, скорости работы) клиентов. Ближайший клиент получит грант на более длинную burst-передачу, так как за единицу времени он передает больше данных (и быстрее освободит эфир).

Atheros Compression technology.

Вторая технология от Atheros, расширяющая стандарт 802.11 — аппаратная компрессия данных. Она встроена во все 802.11a,b,g чипсеты компании. Используемый алгоритм — Lempel Ziv. Этот же алгоритм используется в архиваторах gzip, pkzip, winzip. Данные «на лету» упаковываются перед пересылкой и распаковываются на принимающей стороне.

К сожалению, данные предварительно не анализируются, а сжимаются все кадры подряд. Тем самым, выигрыш достигается не всегда — например, пересылка уже упакованного файла может увеличить размер передаваемых по беспроводной сети данных.

С другой стороны, хорошо подверженные компрессии данные будут переданы кадрами меньшего размера, тем самым передатчик займет меньше эфирного времени на свою передачу. Это время может быть использовано для работы других беспроводных клиентов.

Atheros Fast Frames.

Технология Fast Frames предлагает слияние двух кадров в один, большего размера. Тем самым, мы избавляемся от служебной информации (в заголовке второго пакета — остается лишь один заголовок нового кадра) и временных пауз ожидания между кадрами:

Причем размер полученного кадра-фрейма может достигать 3000 байт, что в два раза больше максимального размера кадра стандартного ethernet-пакета. Таким образом, даже если идет поток данных из проводной сети с пакетами максимального (1500 байт) размера, технология Fast Frames все равно будет работать, объединяя каждые два ethernet-пакета в один бОльшего размера. Как только FastFrames-алгоритм будет согласован между точкой доступа и станцией, все дальнейшие пересылки данных между этими двумя устройствами будут происходить с использованием таких, увеличенных вплоть до 3000 байт, кадров.

С учетом того, что Fast Frames может работать совместно с Frame Bursting, мы получаем очень неплохие результаты по скорости передачи. Кстати говоря, как заявляет Atheros, большинство производителей, реализовавших в своих чипах технологию Frame Bursting, тем не менее, не поддерживают Fast Frames. У Atheros тут все впорядке — их продукты держат и то и другое.

Технология Fast Frames — тоже часть черновой версии стандарта 802.11e. Тем не менее, ее совместимость с продуктами других производителей не гарантируется. С другой стороны, технология работает в рамках стандартных временных интервалов (в отличии от Frame Bursting, которая монопольно занимает полосу на некоторое время). Именно поэтому Fast Frames лучше вписывается в беспроводные сети, где используется оборудования различных производителей.

Texas Instruments Frame Concatenation

Технология Frame Concatenation, реализованная в продуктах компании Texas Instruments, использует те же принципы, что и Fast Frames у Atheros.

Но TI пошли дальше. У них объединению подвергаются два и более кадров (рисунок 7):

Тем самым, они выигрывают на удалении служебной информации и межкадровых интервалов ожидания от одного и более кадров. TI заявляет, что их технология Frame Concatenation будет работать с любыми 802.11b/b+/g продуктами от TI и (!)других производителей. Не совсем ясно, что они имели ввиду под другими производителями, если у последних поддержка этой технологии не будет реализована… Возможо имелась ввиду работа с кадрами, размер которых не превышал стандартного (1500 байт) размера.

В технологию Frame Concatenation заложен алгоритм, позволяющий упаковывать в мега-кадры не все пакеты подряд. Например, если в очереди отправки на заданное направление находится лишь один кадр, то он будет отослан незамедлительно. Другими словами, сливаться будут лишь те кадры, у которых одинаковый адрес получателя (destination address, в данном случае имеется ввиду MAC адрес получателя). Причем, алгоритм действует только на unicast-пакеты — широковещательные (multicast), а так же служебные пакеты отсылаются без изменений.

На данный момент, максимальный размер Concatenation-пакета может достигать 4096 байт (что косвенно говорит о том, что эта технология не совместима с подобной же технологией от Atheros).

Заключение.

Как видно, производители не дожидаются официального объявления стандартов (в данном случае 802.11e), а интегрируют новые технологии в свои продукты. В результате, с одной стороны, достигаются неплохие результаты в виде увеличения скорости, с другой — технологии различных производителей часто оказываются несовместимы друг с другом.

Не рассмотренной осталась технология агрегирования каналов у Atheros (Dynamic Turbo). Про нее — во второй части статьи.

А если к тому времени найдутся документы, описывающие реализации super/plus/etc технологий у других производителей беспроводных решений (или мне подскажут ссылки них в форуме (ссылка чуть ниже)), то обзор этих технологий также будет добавлен во вторую часть статьи.

Ещё на прошлогоднем декабрьском мероприятии Keenetic сделала сразу несколько важных анонсов, но нас в рамках данного обзора интересуют только два. Во-первых, компания действительно продолжает поддерживать старые модели, добавляя в прошивку новые функции. Во-вторых, среди этих новых функций в релизе наконец оказалась система Wi-Fi. Вот с ней-то и познакомимся на примере устройств разных поколений: модели 2015 года Keenetic Ultra II и новинки прошлого года Air (KN-1610). Это очередной наглядный пример важности ПО в современных устройствах.

Keentic Air (KN-1610)

Что такое Wi-Fi-система по версии Keenetic? Если в двух словах, то это централизованное управление точками доступа (ТД) Wi-Fi на основе любых современных устройств компании, подключённых по Ethernet-кабелю к одному из роутеров Keenetic, который в этом случае становится контроллером системы. Ранее, конечно, тоже можно было просто прокинуть кабель до нужного места, поставить там маршрутизатор, перевести его в режим работы обычной ТД и даже задать одинаковые имена и пароли для подключения к беспроводной сети. Однако Wi-Fi-система предлагает именно единое управление всей сетью. Это касается и обновления прошивок, и переноса всех сетевых настроек, и контроля над пользователями и устройствами, и, конечно, бесшовного роуминга, с которым мы познакомились на примере новой «Ультры».

Это своего рода ответ на mesh-системы и в то же время пробный заход на территорию SMB-решений. Причём в обоих случаях компания выигрывает по сочетанию цены и возможностей. С SMB-сегментом в этом смысле всё понятно, потому что стоимость решения для офиса на несколько помещений сама по себе будет немалой даже в случае устройств попроще и подешевле, а для дома такие решения всё равно слегка избыточны. А вот ситуация с mesh-вариантами понятна не всем. Трёхдиапазонные наборы, где один диапазон выделяется исключительно под передачу данных между точками для создания опорной сети, недёшевы. А двухдиапазонные страдают от классической проблемы репитеров — снижения вдвое (или более) базовой скорости из-за полудуплексного характера передачи данных по Wi-Fi. Половину времени точка доступа тратит на общение с другой точкой, а оставшееся распределяет между клиентами, среди которых тоже могут быть точки. И не все варианты поддерживают нормальное перестроение сети в случае отключения одного из узлов. Так что единственный неоспоримый плюс mesh-систем — отсутствие необходимости прокладки кабеля.

Для проводных же систем это, наоборот, единственный недостаток. Зато нет потерь в скорости и задержках беспроводного подключения, так как ресурсы эфира не тратятся на опорную сеть, да и масштабируемость значительно выше. В случае решения Keenetic заметного ограничения на число подчинённых точек доступа нет. По топологии тоже — можно подключить точки звездой, подсоединив их к основному роутеру-контроллеру, а можно и цепочкой, одну за другой, или обоими способами сразу. Собственно говоря, никакой хитрой магии (маршрутизации в данном случае) нет — для проводных подключений работает только коммутация. Из-за этого, например, на дочерних точках доступа в составе системы нельзя привязать к физическому порту отдельный сегмент/VLAN, а вот без Wi-Fi-системы в режиме обычной ТД всё будет доступно. Ну и в целом на дочерних точках в системе пропадает возможность изменения большинства настроек, так как они импортируются с контроллера. Это касается сегментов сети, имён и паролей SSID, роуминга, фильтрации MAC, IP и DHCP.

Из доступных параметров остаются только регион и стандарт, номер (с автовыбором) и ширина канала, мощность радиомодуля и Band Steering, опции включения Tx Burst и WPS. Тем не менее у дочерних устройств всё равно можно настроить доменное имя в KeenDNS и подключить их к облачной службе Keenetic Cloud, переназначить функции аппаратных кнопок, прописать статические маршруты, выбрать режим работы сетевых портов (скорость/дуплекс) и даже добавить новых пользователей. Хотя как раз приложения, где эти пользователи могут понадобиться, толком доступны не будут, за исключением сервисов для USB-накопителей, которые будут видны всей домашней сети: FTP, SMB, DLNA, а также служб DECT-донгла. Вообще говоря, при таком подходе Keenetic определённо стоит создать отдельную серию простых и недорогих точек доступа на тех же аппаратных платформах, что и роутеры, но без программных излишеств: с чуть другими корпусами/антеннами и питанием посредством PoE, а то и вовсе в виде коробочки для установки прямо в розетку. Выбранный для теста Keenetic Air наиболее близок к такой гипотетической ТД.

Технические характеристики Keenetic Air (KN-1610)
Стандарты IEEE 802.11 a/b/g/n/ac (2,4 ГГц + 5 ГГц)
Чипсет/контроллер MediaTek MT7628N (1 × MIPS24KEc 580 МГц) + MT7612
Память RAM 64 Мбайт/ROM 16 Мбайт
Антенны 4 × внешние 5 dBi; длина 175 мм
Шифрование Wi-Fi WPA/WPA2, WEP, WPS
Параметры Wi-Fi 802.11ac: до 867 Мбит/с; 802.11n: до 300 Мбит/с
Интерфейсы 4 × 10/100 Мбит/с Ethernet
Индикаторы 4 × функ. состояние (на верхней крышке); индикаторов портов нет
Аппаратные кнопки Wi-Fi/WPS/FN, перезагрузка/сброс настроек; режим работы
Размеры (Ш × Д × В) 159 ×110 × 29 мм
Масса 240 г
Питание DC 9 В, 0,85 А
Цена ≈ 3 200 рублей
Возможности
Доступ в Интернет Static IP, DHCP, PPPoE, PPTP, L2TP, SSTP, 802.1x; VLAN; КАБiNET; DHCP Relay; IPv6 (6in4); Multi-WAN; приоритеты подключений (policy-based routing); Ping checker; WISP; мастер настройки NetFriend
Сервисы VLAN; VPN-сервер (IPSec/L2TP, PPTP, OpenVPN, SSTP); автообновление ПО; Captive-портал; NetFlow/SNMP; SSH-доступ; Keenetic Cloud; Wi-Fi-система
Защита Родительский контроль, фильтрация, защита от телеметрии и рекламы: «Яндекс.DNS», SkyDNS, AdGuard; HTTPS-доступ к веб-интерфейсу
Проброс портов Интерфейс/VLAN+порт+протокол+IP; UPnP, DMZ; IPTV/VoIP LAN-Port, VLAN, IGMP/PPPoE Proxy, udpxy
QoS/Шейпинг WMM, InteliQoS; указание приоритета интерфейса/VLAN + DPI; шейпер
Сервисы Dynamic DNS DNS-master (RU-Center), DynDns, NO-IP; KeenDNS
Режим работы Маршрутизатор, WISP-клиент/медиаадаптер, точка доступа, повторитель
Проброс VPN, ALG PPTP, L2TP, IPSec; (T)FTP, H.323, RTSP, SIP
Брандмауэр Фильтрация по порт/протокол/IP; Packet Capture; SPI; защита от DoS

Keenetic Air довольно компактен и мало весит (159 ×110 × 29 мм, 240 г), может крепиться к стене, имеет четыре поворотных антенны и два радиомодуля 2 × 2 для диапазонов 2,4 и 5 ГГц (300 и 867 Мбит/с соответственно), оснащён четырьмя сетевыми портами 100 Мбит/с и поставляется с маленьким блоком питания мощностью 7,65 Вт. Внутри у него SoC MediaTek MT7628N в паре с модулем MT7612, которые обеспечивают поддержку 802.11b/g/n/ac. По производительности он аналогичен прошлому поколению Air. Но самое главное — на корпусе у него есть аппаратный переключатель режимов работы. Поэтому, в отличие от других устройств, для перевода Air в режим точки доступа, который и нужен для работы в составе Wi-Fi-системы Keenetic, не надо лезть в веб-интерфейс, менять настройки и ждать перезагрузки — достаточно перед подключением питания просто сдвинуть рычажок переключателя в нужное положение и присоединить ethernet-кабель от контроллера системы. Особых требований к модели Keenetic, выбранной на роль контроллера, в общем-то, нет. Понятно, что если у вас уже есть несколько роутеров компании, то лучше, пожалуй, выбрать основным тот, который побыстрее хотя бы в части ethernet-портов, но это необязательно.

На роутере, который станет впоследствии контроллером Wi-Fi-системы, в настройках надо доустановить одноимённый компонент — в меню слева появится новый пункт. После включения системы Wi-Fi новоявленный контроллер просканирует сеть и предложит «захватить» подходящие точки доступа. Для работы системы требуется прошивка NDMS версии 2.15 или старше, но фактически при захвате точки доступа она всё равно будет обновлена до последней версии. В частности, у тестового Keenetic Air была довольно старая прошивка, что не помешало захватить его, обновить и включить в состав системы Wi-Fi. И… на этом процесс её настройки был завершён! Всё, что касается логики работы проводной и беспроводной сети, теперь настраивается только на контроллере и затем распространяется на все подчинённые точки доступа.

На соседней вкладке можно просмотреть журнал подключений/отключений и переходов устройств между всеми точками доступа. Переходы касаются и перемещений клиентов от одной точки доступа к другой, и переключений между диапазонами в пределах одной ТД, если активирован Band Steering. В логе можно увидеть три варианта переключений: 1) простой переход, когда клиент отключается от одной точки и заново подключается к другой — это самый медленный способ; 2) переход по PMK-кешу, когда при переподключении часть шагов отбрасывается и клиент быстрее цепляется к новой ТД; 3) быстрый переход, или Fast Transition (FT mode), который и даёт роуминг почти без потерь. Реальная же эффективность, а то и вообще наличие роуминга Wi-Fi, зависит в первую очередь от клиентов — при соблюдении всех условий всё равно именно они принимают решение о переходе и его типе, причём не всегда оптимальное.

Наиболее полную информацию о возможностях своих аппаратов в отношении поддержки стандартов, как и прежде, предоставляют Apple и Samsung — по ссылкам коротко рассказано, что такое 802.11 k/v/r и зачем нужны эти стандарты. В веб-интерфейсе Keenetic можно просмотреть текущие параметры подключения к Wi-Fi и наличие поддержки k/v/r для каждого из клиентов. Так что iPhone X, который умеет работать со всеми этими стандартами, снова был выбран в качестве тестового аппарата для проверки работы роуминга в реальной домашней сети с пачкой активных клиентов. На видео ниже хорошо видны две вещи. Во-первых, записи в логе о быстром переходе между двумя точками доступа — контроллером в лице Ultra II и подчинённым Keenetic Air. Во-вторых, снижение скорости при переходе к Air, связанное с ограничением пропускной способности проводной сети. Проводные порты у Air на 100 Мбит/с, но в данном конкретном случае для иллюстрации использовался один поток в полудуплексе, хотя мы знаем, что это не предел для данной платформы. В любом случае это самый частый и практически идеальный вариант перехода с минимальными потерей пакетов и числом ретрансмиссий. Но даже iPhone X иногда делает «медленный» переход с полным переподключением.

Быстрый роуминг Wi-Fi на iPhone X в составе Wi-Fi-системы

Для большинства других современных устройств, скорее всего, будет характерна поддержка только 802.11 k и/или v, а старые, вероятно, не поддерживают ничего из этого. Впрочем, как уже упоминалось в обзоре новой Keenetic Ultra, в реальности FT mode актуален для крайне малого числа приложений, и обычного перехода или уж тем более перехода с помощью PMK-кеша более чем достаточно. К тому же разработчики обещали в следующих релизах улучшить эффективность работы и этого метода тоже. Хотя каким-нибудь устройствам умного дома, например, это и вовсе ненужно. Их можно просто вывести в отдельный изолированный сегмент и — если расширение покрытия нужно, по большому счёту, только для них — докупить для Wi-Fi-системы совсем простые модели Start или Lite. А для типичных домашне-офисных нужд как раз подойдут новые Air, City или Extra.

Заключение

Единственным серьёзным ограничением Wi-Fi-системы в исполнении Keenetic является необходимость прокладки кабеля до подчинённых точек доступа — напрямую или через другие такие же точки. Но именно это выгодно отличает её по скорости передачи данных от mesh-решений, где опорной сетью является тот же Wi-Fi, в лучшем случае с дополнительным 5-ГГц диапазоном, который клиенты использовать всё равно не могут. От кабельных систем других вендоров Keenetic отличается простотой установки и настройки, которую осилит даже обычный пользователь. При этом решение Keenetic, что конкретно для SOHO-систем всё ещё редкость, поддерживает 802.11 k/v/r для организации роуминга вместо традиционного грубого отключения клиента от ТД при ослаблении сигнала и оставления его на волю судьбы. Естественно, для полного счастья нужна поддержка этих технологий и со стороны клиентов.

А вообще всё это, по-хорошему, заслуга исключительно программистов и общей политики компании. Как и в нашем сценарии, владельцы старых устройств получают поддержку новых функций, а при необходимости увеличения покрытия могут докупить роутеры посовременнее. Недельная работа связки Ultra II и обновлённого Air оказалась настолько незаметной, что лишь укрепила веру в необходимость создания отдельной серии точек доступа для работы в составе Wi-Fi-системы — желательно в компактном корпусе и с PoE-питанием. Что же, посмотрим. Пока компания занята выходом на зарубежные рынки, а следующее большое обновление моделей запланировано на вторую половину года.

NOTE: В данной статье показана настройка версий ОС NDMS 2.11 и более ранних. Настройка актуальной версии ПО представлена в статьях «Беспроводная сеть Wi-Fi 2,4 ГГц» и «Беспроводная сеть Wi-Fi 5 ГГц».

При первом же включении интернет-центр развертывает максимально защищенную по стандарту WPA2 беспроводную сеть Wi-Fi. Оптимальный рабочий канал выбирается автоматически на основе периодического анализа радиоэфира.

В большинстве случаев никаких дополнительных настроек основной точки доступа Wi-Fi производить не нужно. Достаточно знать пароль сети (ключ) для подключения к беспроводной сети интернет-центра (пароль сети указан на наклейке, которая находится на нижней панели корпуса).

При необходимости, вы можете самостоятельно настроить параметры вашей беспроводной сети. Базовые настройки точки доступа Wi-Fi в интернет-центре серии Keenetic производятся в веб-конфигураторе устройства в меню Сеть Wi-Fi на вкладке Точка доступа.
Здесь вы можете изменить имя беспроводной сети, пароль доступа к ней, а также другие параметры. Если вы хотите, чтобы беспроводная сеть работала только в определенные часы, настройте для нее расписание.
Обратите внимание, что после изменения имени сети или ее пароля (ключа) потребуется заново настроить беспроводное подключение на всех ваших устройствах.

Для обеспечения защищенного беспроводного подключения в поле Защита сети установите необходимый уровень безопасности. Мы рекомендуем использовать максимальный уровень безопасности с помощью протокола WPA2-PSK (установлен по умолчанию).
Внимание! Использование открытой (незащищенной) сети небезопасно!
В поле Ключ сети можно изменить предустановленный ключ (пароль). Он должен быть длиной от 8 до 63 символов. Используемый ключ нужно будет вводить при подключении клиентов к точке доступа.

В поле Страна можно вручную установить код страны, который влияет на набор радиоканалов, используемый в точке доступа. В разных странах разрешены различные частотные диапазоны и номера каналов. Например, в России, Украине, Республике Беларусь и Казахстане разрешено использовать беспроводные каналы с номерами 1-13, а в США разрешены 11 каналов. Для корректной работы беспроводных устройств в сети мы рекомендуем использовать значение Russian Federation, установленное по умолчанию.

В поле Стандарт выберите стандарт, который будет использоваться для подключения клиентов. По умолчанию установлен стандарт 802.11bgn для большей совместимости устройств.

В поле Канал по умолчанию установлено значение Оптимальный*. В этом случае интернет-центром автоматически выбирается оптимальный рабочий канал на основе периодического анализа радиоэфира. В старых версиях операционной системы NDMS за автоматический выбор беспроводного канала отвечает значение Авто.
В поле Выбор оптимального канала* предустановлено значение При включении, но можно выбрать Каждые 6 часов, Каждые 12 часов или Каждые 24 часа (начиная с версии NDMS v2.09 было добавлено значение Динамически, когда выбор оптимального канала осуществляется каждый час, при условии минимального трафика).
Если установлено значение При включении и нажать кнопку Применить, будет выбран оптимальный номер канала в текущий момент.
При необходимости можно вручную установить номер канала (c 1 по 13), в котором будет работать точка доступа. В случае ручного выбора канала рекомендуем установить номер свободного непересекающегося беспроводного канала (1, 6 или 11). Выбирайте оптимальный канал, максимально удаленный от чужих беспроводных сетей, если таковые имеются в радиусе действия вашей точки доступа, чтобы обеспечить устойчивую работу сети Wi-Fi.

В поле Мощность сигнала можно установить требуемый уровень мощности сигнала Wi-Fi, излучаемый передатчиком беспроводной точки доступа. Доступные значения: 100%, 75%, 50%, 25%, 10%. При значении 100% используется максимальная мощность сигнала.

В настройках точки доступа по умолчанию включен режим WMM (Wi-Fi Multimedia). Он обеспечивает основные возможности технологии качества обслуживания QoS (quality of service) для сетей IEEE 802.11, что позволяет отдавать приоритет голосовому (VoIP) и видео (IPTV) трафику над процессами, менее чувствительными к скорости передачи данных.

Интернет-центры серии Keenetic поддерживают создание списка доступа по MAC-адресам для беспроводной сети. Можно составить «белый» или «черный» список клиентов точки доступа Wi-Fi. В режиме «Белый список» доступ к домашней беспроводной сети будет заблокирован для всех клиентов, не вошедших в список. В режиме «Черный список» доступ к домашней беспроводной сети будет заблокирован только для клиентов из списка. Данная возможность настраивается в меню Сеть Wi-Fi на вкладке Список доступа. Дополнительная информация представлена в статье: «Контроль доступа по MAC-адресам для беспроводной сети Wi-Fi»

* — Данные поля появились в веб-интерфейсе, начиная с версии v2.08 операционной системы NDMS.
В версии NDMS v2.09 в поле Выбор оптимального канала появился пункт Динамически. При использовании этого параметра интернет-центр будет один раз в час сканировать окружающее пространство Wi-Fi и выбирать наиболее свободный канал.

Примечание

1. Начиная с версии ОС NDMS v2.10 на странице настройки точки доступа Wi-Fi появилась новая опция Непрерывная передача (Tx Burst) и отсутствует опция WMM.

Tx Burst включает непрерывный режим передачи для увеличения пиковой скорости передачи данных от интернет-центра к клиентам 802.11n/ac (т.е. увеличить исходящую скорость). Эффективность работы данного режима зависит от возможностей беспроводного адаптера клиента. Например, на некоторых адаптерах скорость Интернета для Wi-Fi-устройств может снизится.

По умолчанию режим Непрерывная передача Tx Burst выключен.

Что касается режима WMM, то если он был ранее включен, то и далее остается включенным. Эту информацию можно увидеть в системном файле startup-config. Если слово wmm присутствует в тексте файла startup-config, значит WMM включен.
Для отключения/включения опции WMM, используйте интерфейс командной строки (CLI) роутера. Например:

(config)> interface WifiMaster0/AccessPoint0 / WifiMaster0/AccessPoint0 — для 2,4 ГГц или interface WifiMaster1/AccessPoint0 — для 5 ГГц /
Core::Configurator: Done.
(config-if)> wmm / включить /
Network::Interface::Rtx::AccessPoint: «WifiMaster0/AccessPoint0»: WMM extensions enabled.
(config-if)> no wmm / выключить /
Network::Interface::Rtx::AccessPoint: «WifiMaster0/AccessPoint0»: WMM extensions disabled.
(config-if)> system configuration save / сохранить настройки /

2. Настройки Точки доступа 5 ГГц практически совпадают с настройками Точки доступа 2,4 ГГц, за исключением некоторых параметров.

В поле Имя сети (SSID) указано имя сети Wi-Fi в диапазоне 5 ГГц. Обычно, в двухдиапазонных роутерах для каждого из диапазонов используются разные имена сетей, но в Keenetic Air и Extra II по умолчанию используется одинаковое имя сети.

В поле Стандарт выберите стандарт, который будет использоваться для подключения клиентов. По умолчанию установлен стандарт 802.11an+ac для большей совместимости устройств.

В поле Канал по умолчанию установлено значение Оптимальный. В этом случае интернет-центром автоматически выбирается оптимальный рабочий канал на основе периодического анализа радиоэфира. При необходимости можно вручную установить номер канала (c 36 по 165), в котором будет работать точка доступа 5 ГГц (о некоторых особенностях каналов в диапазоне 5 ГГц читайте в статье «Мобильное устройство не видит сеть Wi-Fi 5 ГГц?»).

Для точки доступа 5 ГГц доступна настройка функции Band Steering (по умолчанию включена). Дополнительную информацию по работе Band Steering вы найдете в статье «Как работает механизм Band Steering и зачем его включать?»

О преимуществах и недостатках каждого из диапазонов можно прочитать в статье «Отличия частотных диапазонов 2,4 ГГц и 5 ГГц»

TX мощность (TX power) в Wi-Fi роутере: разбираемся в настройках

Доброго времени суток всем! Сегодня мы поговорим про TX мощность или Power. Сначала давайте ответим на вопрос – что же это такое. Если говорить простым языком, то это мощность беспроводного сигнала. Чаще всего используется две метрики dBm и mW. По сути, если увеличить данный показатель, то можно увеличить зону покрытия Wi-Fi сигнала.

Многие сразу же начнут думать, что таким образом можно улучшить сигнал. На самом деле этот вопрос только усложняется при увеличении мощности передатчика. Обычно большие мощности используют для передачи радиоволн не большое расстояние. Но что будет если увеличить мощность в пределах маленькой квартиры.

Радиоволны, как и любая другая волна может отражаться от препятствий. То есть она будет отражаться от бетонных стен. Особенно хорошо отражается волны от металла и зеркал. В результате в квартире радиочастоты будут засорены собственным вай-фаем. Это может привести к потери сигнала, помехам, ухудшению связи и скорости.

Прибавим сюда лишние радиоволны от других устройств. Также может сильно ухудшиться мобильная связь – и в трубке вы будете слышать вместо слов собеседника шиканье и тишину. А теперь представим, что у ваших соседей будет стоять более мощные роутеры, тогда они будут бить через несколько стен и мешать как себе, так и другим. В итоге интернет через WiFi будет плохой у всех.

Как увеличить или уменьшить

Если у вас небольшая квартира, то лучше сигнал уменьшить, чтобы не мешать соседям и самому себе. То есть если даже в самой дальней комнате сигнал спокойно доходит до устройства. Также его можно увеличить, если вы живете в большом доме. Для начала вам нужно уже быть подключенным к сети маршрутизатора. Далее нужно с подключенного устройства зайти и вписать адрес роутера в адресную строку браузера. Стандартный адрес находится на этикетке под аппаратом.

TX мощность (TX power) в Wi-Fi роутере: разбираемся в настройках

После этого вам нужно будет ввести логин и пароль от администраторской панели. Далее инструкции будут отличаться в зависимости от модели и фирмы интернета-центра.

«Беспроводная сеть» – «Профессионально».

TX мощность (TX power) в Wi-Fi роутере: разбираемся в настройках

Теперь пролистываем в самый низ. После того как поставите значение не забудьте нажать на кнопку «Применить».

TX мощность (TX power) в Wi-Fi роутере: разбираемся в настройках

Zyxel Keenetic

В новой прошивке сразу же перейдите в соответствующее меню беспроводной сети. Мощность написана в процентах. Градация мощности такая:

  • 10% – 11 дБм
  • 25% – 14 дБм
  • 50% – 17 дБм
  • 75% – 19 дБм
  • 100% – 20 дБм

TX мощность (TX power) в Wi-Fi роутере: разбираемся в настройках

На старой прошивке нажимаем по «лесенке», далее выбираем мощность и нажимаем «Применить».

TX мощность (TX power) в Wi-Fi роутере: разбираемся в настройках

Transmit Power D-Link

TX мощность (TX power) в Wi-Fi роутере: разбираемся в настройках

На новой прошивке, нужно внизу выбрать «Расширенные настройки». Далее в разделе «Wi-Fi» с помощью стрелочки найдите пункт «Дополнительные настройки». Устанавливаем значение и сохраняем параметры.

TX мощность (TX power) в Wi-Fi роутере: разбираемся в настройках

«Wi-Fi» – «Доп. настройки». Все по аналогии с новой прошивкой.

TX мощность (TX power) в Wi-Fi роутере: разбираемся в настройках

TP-Link

«Беспроводной режим» – «Доп. настройки». Теперь устанавливаем значение в верхнем пункте и сохраняемся.

TX мощность (TX power) в Wi-Fi роутере: разбираемся в настройках

Если у вас другая прошивка, то просто действуйте согласно стрелочкам на картинке ниже.

TX мощность (TX power) в Wi-Fi роутере: разбираемся в настройках

Mikrotik уменьшить или увеличить мощность WiFi

Делается это в «Intarface » в седьмой вкладке Микротик. Самыми оптимальными вариантами будет от 18 до 21 dBm. 27 ставить не рекомендую, так как будет повышенный фон, а связь будет только хуже.

Tx burst zyxel что это

Burst.com — (pinksheets|BRST) is a company that specializes in revenue generation via patent defense in the area of software for video and audio delivery over the Internet.While it has moved from Arizona to San Francisco and various other locations over its… … Wikipedia

Burst (Flandern) — Burst … Deutsch Wikipedia

Burst Angel — Saltar a navegación, búsqueda Burst Angel 爆裂天使 (Bakuretsu Tenshi) Género Acción, Comedia, Mecha, Yuri Anime … Wikipedia Español

Burst — may refer to: *Burst mode, a mode of operation where events occur in rapid succession **Burst transmission, a term in telecommunications **Burst switching, a feature of some packet switched networks **Bursting, a signaling mode of neurons*Burst… … Wikipedia

Burst — Saltar a navegación, búsqueda Burst Información personal Origen Kristinehamn Suecia … Wikipedia Español

Burst! — is a client for the BitTorrent protocol.Burst! uses a modified version of the original python client as the back end, and replaces the front end with a native Win32 application, which has a smaller memory footprint, due to replacing the wxPython… … Wikipedia

Burst — Burst … Wikipédia en Français

Burst — (b[^u]rst), v. t. 1. To break or rend by violence, as by an overcharge or by strain or pressure, esp. from within; to force open suddenly; as, to burst a cannon; to burst a blood vessel; to burst open the doors. [1913 Webster] My breast I ll… … The Collaborative International Dictionary of English

Burst — Burst, n. 1. A sudden breaking forth; a violent rending; an explosion; as, a burst of thunder; a burst of applause; a burst of passion; a burst of inspiration. [1913 Webster] Bursts of fox hunting melody. W. Irving. [1913 Webster] 2. Any brief,… … The Collaborative International Dictionary of English

Ещё на прошлогоднем декабрьском мероприятии Keenetic сделала сразу несколько важных анонсов, но нас в рамках данного обзора интересуют только два. Во-первых, компания действительно продолжает поддерживать старые модели, добавляя в прошивку новые функции. Во-вторых, среди этих новых функций в релизе наконец оказалась система Wi-Fi. Вот с ней-то и познакомимся на примере устройств разных поколений: модели 2015 года Keenetic Ultra II и новинки прошлого года Air (KN-1610). Это очередной наглядный пример важности ПО в современных устройствах.

Keentic Air (KN-1610)

Что такое Wi-Fi-система по версии Keenetic? Если в двух словах, то это централизованное управление точками доступа (ТД) Wi-Fi на основе любых современных устройств компании, подключённых по Ethernet-кабелю к одному из роутеров Keenetic, который в этом случае становится контроллером системы. Ранее, конечно, тоже можно было просто прокинуть кабель до нужного места, поставить там маршрутизатор, перевести его в режим работы обычной ТД и даже задать одинаковые имена и пароли для подключения к беспроводной сети. Однако Wi-Fi-система предлагает именно единое управление всей сетью. Это касается и обновления прошивок, и переноса всех сетевых настроек, и контроля над пользователями и устройствами, и, конечно, бесшовного роуминга, с которым мы познакомились на примере новой «Ультры».

Это своего рода ответ на mesh-системы и в то же время пробный заход на территорию SMB-решений. Причём в обоих случаях компания выигрывает по сочетанию цены и возможностей. С SMB-сегментом в этом смысле всё понятно, потому что стоимость решения для офиса на несколько помещений сама по себе будет немалой даже в случае устройств попроще и подешевле, а для дома такие решения всё равно слегка избыточны. А вот ситуация с mesh-вариантами понятна не всем. Трёхдиапазонные наборы, где один диапазон выделяется исключительно под передачу данных между точками для создания опорной сети, недёшевы. А двухдиапазонные страдают от классической проблемы репитеров — снижения вдвое (или более) базовой скорости из-за полудуплексного характера передачи данных по Wi-Fi. Половину времени точка доступа тратит на общение с другой точкой, а оставшееся распределяет между клиентами, среди которых тоже могут быть точки. И не все варианты поддерживают нормальное перестроение сети в случае отключения одного из узлов. Так что единственный неоспоримый плюс mesh-систем — отсутствие необходимости прокладки кабеля.

Для проводных же систем это, наоборот, единственный недостаток. Зато нет потерь в скорости и задержках беспроводного подключения, так как ресурсы эфира не тратятся на опорную сеть, да и масштабируемость значительно выше. В случае решения Keenetic заметного ограничения на число подчинённых точек доступа нет. По топологии тоже — можно подключить точки звездой, подсоединив их к основному роутеру-контроллеру, а можно и цепочкой, одну за другой, или обоими способами сразу. Собственно говоря, никакой хитрой магии (маршрутизации в данном случае) нет — для проводных подключений работает только коммутация. Из-за этого, например, на дочерних точках доступа в составе системы нельзя привязать к физическому порту отдельный сегмент/VLAN, а вот без Wi-Fi-системы в режиме обычной ТД всё будет доступно. Ну и в целом на дочерних точках в системе пропадает возможность изменения большинства настроек, так как они импортируются с контроллера. Это касается сегментов сети, имён и паролей SSID, роуминга, фильтрации MAC, IP и DHCP.

Из доступных параметров остаются только регион и стандарт, номер (с автовыбором) и ширина канала, мощность радиомодуля и Band Steering, опции включения Tx Burst и WPS. Тем не менее у дочерних устройств всё равно можно настроить доменное имя в KeenDNS и подключить их к облачной службе Keenetic Cloud, переназначить функции аппаратных кнопок, прописать статические маршруты, выбрать режим работы сетевых портов (скорость/дуплекс) и даже добавить новых пользователей. Хотя как раз приложения, где эти пользователи могут понадобиться, толком доступны не будут, за исключением сервисов для USB-накопителей, которые будут видны всей домашней сети: FTP, SMB, DLNA, а также служб DECT-донгла. Вообще говоря, при таком подходе Keenetic определённо стоит создать отдельную серию простых и недорогих точек доступа на тех же аппаратных платформах, что и роутеры, но без программных излишеств: с чуть другими корпусами/антеннами и питанием посредством PoE, а то и вовсе в виде коробочки для установки прямо в розетку. Выбранный для теста Keenetic Air наиболее близок к такой гипотетической ТД.

Технические характеристики Keenetic Air (KN-1610)
Стандарты IEEE 802.11 a/b/g/n/ac (2,4 ГГц + 5 ГГц)
Чипсет/контроллер MediaTek MT7628N (1 × MIPS24KEc 580 МГц) + MT7612
Память RAM 64 Мбайт/ROM 16 Мбайт
Антенны 4 × внешние 5 dBi; длина 175 мм
Шифрование Wi-Fi WPA/WPA2, WEP, WPS
Параметры Wi-Fi 802.11ac: до 867 Мбит/с; 802.11n: до 300 Мбит/с
Интерфейсы 4 × 10/100 Мбит/с Ethernet
Индикаторы 4 × функ. состояние (на верхней крышке); индикаторов портов нет
Аппаратные кнопки Wi-Fi/WPS/FN, перезагрузка/сброс настроек; режим работы
Размеры (Ш × Д × В) 159 ×110 × 29 мм
Масса 240 г
Питание DC 9 В, 0,85 А
Цена ≈ 3 200 рублей
Возможности
Доступ в Интернет Static IP, DHCP, PPPoE, PPTP, L2TP, SSTP, 802.1x; VLAN; КАБiNET; DHCP Relay; IPv6 (6in4); Multi-WAN; приоритеты подключений (policy-based routing); Ping checker; WISP; мастер настройки NetFriend
Сервисы VLAN; VPN-сервер (IPSec/L2TP, PPTP, OpenVPN, SSTP); автообновление ПО; Captive-портал; NetFlow/SNMP; SSH-доступ; Keenetic Cloud; Wi-Fi-система
Защита Родительский контроль, фильтрация, защита от телеметрии и рекламы: «Яндекс.DNS», SkyDNS, AdGuard; HTTPS-доступ к веб-интерфейсу
Проброс портов Интерфейс/VLAN+порт+протокол+IP; UPnP, DMZ; IPTV/VoIP LAN-Port, VLAN, IGMP/PPPoE Proxy, udpxy
QoS/Шейпинг WMM, InteliQoS; указание приоритета интерфейса/VLAN + DPI; шейпер
Сервисы Dynamic DNS DNS-master (RU-Center), DynDns, NO-IP; KeenDNS
Режим работы Маршрутизатор, WISP-клиент/медиаадаптер, точка доступа, повторитель
Проброс VPN, ALG PPTP, L2TP, IPSec; (T)FTP, H.323, RTSP, SIP
Брандмауэр Фильтрация по порт/протокол/IP; Packet Capture; SPI; защита от DoS

Keenetic Air довольно компактен и мало весит (159 ×110 × 29 мм, 240 г), может крепиться к стене, имеет четыре поворотных антенны и два радиомодуля 2 × 2 для диапазонов 2,4 и 5 ГГц (300 и 867 Мбит/с соответственно), оснащён четырьмя сетевыми портами 100 Мбит/с и поставляется с маленьким блоком питания мощностью 7,65 Вт. Внутри у него SoC MediaTek MT7628N в паре с модулем MT7612, которые обеспечивают поддержку 802.11b/g/n/ac. По производительности он аналогичен прошлому поколению Air. Но самое главное — на корпусе у него есть аппаратный переключатель режимов работы. Поэтому, в отличие от других устройств, для перевода Air в режим точки доступа, который и нужен для работы в составе Wi-Fi-системы Keenetic, не надо лезть в веб-интерфейс, менять настройки и ждать перезагрузки — достаточно перед подключением питания просто сдвинуть рычажок переключателя в нужное положение и присоединить ethernet-кабель от контроллера системы. Особых требований к модели Keenetic, выбранной на роль контроллера, в общем-то, нет. Понятно, что если у вас уже есть несколько роутеров компании, то лучше, пожалуй, выбрать основным тот, который побыстрее хотя бы в части ethernet-портов, но это необязательно.

На роутере, который станет впоследствии контроллером Wi-Fi-системы, в настройках надо доустановить одноимённый компонент — в меню слева появится новый пункт. После включения системы Wi-Fi новоявленный контроллер просканирует сеть и предложит «захватить» подходящие точки доступа. Для работы системы требуется прошивка NDMS версии 2.15 или старше, но фактически при захвате точки доступа она всё равно будет обновлена до последней версии. В частности, у тестового Keenetic Air была довольно старая прошивка, что не помешало захватить его, обновить и включить в состав системы Wi-Fi. И… на этом процесс её настройки был завершён! Всё, что касается логики работы проводной и беспроводной сети, теперь настраивается только на контроллере и затем распространяется на все подчинённые точки доступа.

На соседней вкладке можно просмотреть журнал подключений/отключений и переходов устройств между всеми точками доступа. Переходы касаются и перемещений клиентов от одной точки доступа к другой, и переключений между диапазонами в пределах одной ТД, если активирован Band Steering. В логе можно увидеть три варианта переключений: 1) простой переход, когда клиент отключается от одной точки и заново подключается к другой — это самый медленный способ; 2) переход по PMK-кешу, когда при переподключении часть шагов отбрасывается и клиент быстрее цепляется к новой ТД; 3) быстрый переход, или Fast Transition (FT mode), который и даёт роуминг почти без потерь. Реальная же эффективность, а то и вообще наличие роуминга Wi-Fi, зависит в первую очередь от клиентов — при соблюдении всех условий всё равно именно они принимают решение о переходе и его типе, причём не всегда оптимальное.

Наиболее полную информацию о возможностях своих аппаратов в отношении поддержки стандартов, как и прежде, предоставляют Apple и Samsung — по ссылкам коротко рассказано, что такое 802.11 k/v/r и зачем нужны эти стандарты. В веб-интерфейсе Keenetic можно просмотреть текущие параметры подключения к Wi-Fi и наличие поддержки k/v/r для каждого из клиентов. Так что iPhone X, который умеет работать со всеми этими стандартами, снова был выбран в качестве тестового аппарата для проверки работы роуминга в реальной домашней сети с пачкой активных клиентов. На видео ниже хорошо видны две вещи. Во-первых, записи в логе о быстром переходе между двумя точками доступа — контроллером в лице Ultra II и подчинённым Keenetic Air. Во-вторых, снижение скорости при переходе к Air, связанное с ограничением пропускной способности проводной сети. Проводные порты у Air на 100 Мбит/с, но в данном конкретном случае для иллюстрации использовался один поток в полудуплексе, хотя мы знаем, что это не предел для данной платформы. В любом случае это самый частый и практически идеальный вариант перехода с минимальными потерей пакетов и числом ретрансмиссий. Но даже iPhone X иногда делает «медленный» переход с полным переподключением.

Быстрый роуминг Wi-Fi на iPhone X в составе Wi-Fi-системы

Для большинства других современных устройств, скорее всего, будет характерна поддержка только 802.11 k и/или v, а старые, вероятно, не поддерживают ничего из этого. Впрочем, как уже упоминалось в обзоре новой Keenetic Ultra, в реальности FT mode актуален для крайне малого числа приложений, и обычного перехода или уж тем более перехода с помощью PMK-кеша более чем достаточно. К тому же разработчики обещали в следующих релизах улучшить эффективность работы и этого метода тоже. Хотя каким-нибудь устройствам умного дома, например, это и вовсе ненужно. Их можно просто вывести в отдельный изолированный сегмент и — если расширение покрытия нужно, по большому счёту, только для них — докупить для Wi-Fi-системы совсем простые модели Start или Lite. А для типичных домашне-офисных нужд как раз подойдут новые Air, City или Extra.

Заключение

Единственным серьёзным ограничением Wi-Fi-системы в исполнении Keenetic является необходимость прокладки кабеля до подчинённых точек доступа — напрямую или через другие такие же точки. Но именно это выгодно отличает её по скорости передачи данных от mesh-решений, где опорной сетью является тот же Wi-Fi, в лучшем случае с дополнительным 5-ГГц диапазоном, который клиенты использовать всё равно не могут. От кабельных систем других вендоров Keenetic отличается простотой установки и настройки, которую осилит даже обычный пользователь. При этом решение Keenetic, что конкретно для SOHO-систем всё ещё редкость, поддерживает 802.11 k/v/r для организации роуминга вместо традиционного грубого отключения клиента от ТД при ослаблении сигнала и оставления его на волю судьбы. Естественно, для полного счастья нужна поддержка этих технологий и со стороны клиентов.

А вообще всё это, по-хорошему, заслуга исключительно программистов и общей политики компании. Как и в нашем сценарии, владельцы старых устройств получают поддержку новых функций, а при необходимости увеличения покрытия могут докупить роутеры посовременнее. Недельная работа связки Ultra II и обновлённого Air оказалась настолько незаметной, что лишь укрепила веру в необходимость создания отдельной серии точек доступа для работы в составе Wi-Fi-системы — желательно в компактном корпусе и с PoE-питанием. Что же, посмотрим. Пока компания занята выходом на зарубежные рынки, а следующее большое обновление моделей запланировано на вторую половину года.

Практически во всех выпускаемых ныне беспроводных адаптерах стандарта 802.11g можно встретить суффиксы «super G», «turbo», «plus» и т.д. Причем суффиксами дело обычно не ограничиваются. Производители (точнее их маркетологи) красочно рисуют на коробках цифры 108, а некоторые — аж 125 Мбит/сек.

125 — звучит заманчиво. Неужели беспроводные адаптеры работают быстрее старого доброго Fast Ethernet по проводам? Может ну их… в баню, эти «древние» Fast Ethernet адаптеры? Выкидываем надоевшие кабели и да здравствует радиоезернет? ��

Но, как говорится, семь раз отмерь, один — отрежь. Что в нашем случае означает, что не мешало бы поподробнее узнать, что же это за такие загадочные технологии, как они работают и какие на самом деле скорости обеспечивают (и самое главное — при каких условиях). Другими словами, не забываем анекдот про физиков и из сферических коней в вакууме. А так же делаем скидку маркетологам на то, что для них важнее всего — продать решения своей компании.

Различных вариантов «разгона» стандартного 802.11g существует довольно много. Точнее — у каждого производителя чипов оно свое (по крайней мере — называется по-разному). К сожалению, не все производители объясняют, что именно представляют из себя их технологии. Информацию по технологиям мне удалось найти лишь у компании Atheros и Texas Instruments. Но наиболее информативный ресурс оказался у Atheros — у них даже есть отдельный сайт, посвященный их технологиям Super G и Super AG.

Собственно, бОльшая часть статьи — это компиляция информации с сайтов Atheros и Texas Instruments и по мелочи — из других источников.

Переходим непосредственно к технологиям.

Для начала посмотрим на «чистый» 802.11g. Максимальная пропускная способность в этом режиме — 54 Мбит/сек. Думаю, большинство читателей знает, как перевести мегабиты в мегабайты? Правильно — делим мегабиты на восемь и получаем скорость 6.75 Мбайт/сек.

Но внимательные читатели (кто смотрит в статьях не только предисловие и выводы, а иногда пробегается, хотя бы одним глазом, по диаграммам замера скоростей) знают, что в обычном 802.11g режиме скоростей более

25 Мбит мы не получали. Так это же только половина от 54 Мбит! Куда делась вторая половина? Куда — это тема отдельной статьи, отмечу лишь, что на пользовательские данные действительно приходится примерно половина (в лучшем случае) пропускной способности канала.

Это первая плохая новость. Есть и вторая. Радиоволны (собственно, с помощью них и передается информация в беспроводных сетях) передаются во все стороны от источника сигнала (рассматриваем общий случай). Т.е. передающего слышат все. Эти «все» могут принимать данные или не принимать, это не важно. Главное — они не могут в этот момент что-либо передавать на той же частоте. Точнее говоря, попытаться то они могут, но сигналы обоих источников наложатся друг на друга, в результате чего информационная составляющая будет искажена и потеряна. Другими словами, в беспроводных сетях одновременно может передавать только один источник из нескольких, работающих на одной и той же частоте. Т.е. принцип рации — сначала говорим, потом молчим и слушаем.

Таким образом, щедро выделенные нам

25 Мбит делятся на всех участников беспроводной сети. Если количество клиентов составляет 5 хостов, то в момент интенсивной передачи данных с каждого, на одного придется канал пропускной способностью примерно 5 Мбит (а на самом деле даже чуть меньше).

Есть и третья плохая новость. Вторая «плохая новость» насчет «5 Мбит на 5 хостов» верна лишь в случае Ad Hoc сети, т.е. без точки доступа. Если брать более общий случай с точкой доступа, то эти жалкие 5 мбит придется поделить еще на два. Ведь в Infrastructure режиме беспроводной сети (с участием точки доступа) любой обмен с клиентами проходит через точку доступа. А она сначала должна принять данные, а потом ретранслировать их к получателю. В результате получаем по 2 с хвостиком мегабита на брата.

Теперь вернемся к цифрам 108 и 125, которые так любят крупным шрифтом рисовать на коробках производители. Ну, вы уже все поняли, да? ��

Смело делим на два (про сферического коня чуть позже). Получаем максимум 60мбит в случае одного клиента и соответственно в n-цать раз меньше, в случае N клиентов.

Для тех, кому надо было лишь выяснить, пора ли выкидывать провода или «еще погодить», дальнейшую часть статьи можно не читать. Ответ — выкидывать пока рано. Как минимум, надо дождаться WiMAX.

Теперь перейдем к более детальному рассмотрению рассмотрению технологий увеличения пропускной способности беспроводных сетей по сравнению со стандартным 802.11g режимом.

Полагаю, у всех производителей все их плюсы, турбо и т.д. представляют собой то же самое, что и у Atheros с TI, но с другим названием. Но детали реализаций могут различаться, поэтому не факт, что технологии различных производителей совместимы друг с другом.

Технология Atheros для 802.11g носит название Super G (есть еще одна — Super AG, это тоже самое, но для стандарта 802.11a, т.е. для сетей на 5 ГГц). Atheros Super G позволяет увеличить пропускную способность до 108 Мбит/сек. И, как честно заявляет Atheros, для пользователя скорость может достигать 60 Мбит.

Увеличение производительности достигается несколькими способами:

Atheros Super G / Super AG технологии:
  • посылка большего количества кадров за тот же временной интервал
  • увеличение пропускной способности за счет удаления части накладных расходов
  • компрессия данных в реальном времени
  • Lempel Ziv компрессия
  • увеличение пропускной способности за счет предварительного сжатия информации
  • центральный процессор компьютера не задействуется
  • агрегация (объединение) кадров (размер кадров до 3000 байт) и манипуляции с временными интервалами
  • увеличение пропускной способности за счет передачи большего количества данных в одном кадре и удаления межкадровых временнЫх пауз
  • технология, аналогичная транкингу в ethernet-сетях, т.е. задействование одновременно двух каналов для передачи
  • постоянный мониторинг окружения и подстройка скорости под текущие нужды
  • максимальное увеличение пропускной способности за счет использования нескольких (двух) каналов передачи одновременно

У себя на сайте Atheros приводит красочную диаграмму, показывающую влияния различных технологий на скорость передачи данных:

В базовом режиме 802.11g или 802.11a, в котором все расширенные технологии отключены, можно получить скорость до 22 Мбит (чистых, т.е. доступных пользователю). Добавляя технологии, которые возможно будут в будущем стандарте 802.11e (Bursting, Fast Frames, Compression), можно увеличить скорость до 40 Мбит включительно. Активируя Dynamic Turbo режим, т.е. задействуя два канала под передачу данных, можно довести скорость до теоретического максимума в 60 Мбит.

Разумеется, приведенные цифры — это лишь максимально возможная скорость в данном режиме работы (тот самый сферический конь в вакууме). В реальности все будет зависеть от таких условий, как удаленность клиента от точки доступа, количество одновременно работающих клиентов, радиообстановка в месте, где расположена беспроводная сеть и так далее.

У Texas Instruments технологии повышения производительности носят название G-Plus. Часть из них похожа на технологии Atheros, часть — присуще только TI.

Texas Instruments G-Plus технологии:
  • объединение данных из нескольких пакетов — в один (размер пакета — до 4000 байт)
  • увеличение пропускной способности за счет удаления служебной информации заголовков «лишних» кадров и удаления времени межкадрового ожидания
  • аналогично технологии от Atheros
  • аналогично технологии от Atheros

Подробно остановимся на каждой из перечисленных технологий — bursting, compression, fast frames, dynamic turbo. Примечательно то, что все четыре технологии работают независимо друг от друга, тем самым добиваясь максимально возможной производительности одновременно несколькими способами.

1. Bursting.

Frame Bursting — технология, заложенная в предварительный вариант стандарта 802.11e QoS. Frame Bursting позволяет увеличивать пропускную способность линка при обмене (точка-точка) между 802.11a, b или g устройствами за счет уменьшения накладных расходов, возникающих при передаче данных в беспроводных сетях. Причем хорошие результаты достигаются как в гомогенных (однородных), так и в смешанных беспроводных сетях.

На рисунке 2 приведен пример стандартной передачи (without bursting).

В режиме стандартной передачи данных мы наблюдаем процесс передачи двух кадров (frame1 и frame2) во времени от источника Source к получателю Destination. Процесс передачи данных поделен на временные интервалы (по оси X — ось времени). Так как в любой момент времени передавать может лишь один источник, то каждая станция слушает эфир в течении времени DIFS (Distributed InterFrame Space), если она не услышала передачи другой станции, значит эфир свободен, можно передавать кадр. После передачи кадра (frame1), станция-передатчик ждет подтверждения об успешном приеме от получателя. Получатель обязан отослать подтверждение (ack), которое он отсылает практически сразу, после ожидания короткого промежутка времени SIFS — Short InterFrame Space (если подтверждения не было, то получатель считает, что кадр не был принят и должен перепослать его заново). После получения подтверждения передатчик опять обязан выждать интервал времени DIFS и только потом (если эфир по-прежнему свободен) начать отсылку второго кадра frame2. И так далее.

Таким образом, кадры ожидания DIFS отнимают достаточно существенную часть пропускной способности беспроводной сети.

Теперь посмотрим на картину передачи при использовании технологии Frame Bursting:

В этом режиме (рисунок 3), источник и получатель монопольно [по очереди] занимают канал под свою передачу. После передачи кадра frame1 и получения подтверждения об успешном приеме оного, передатчик не ждет положенный интервал времени DIFS. Передатчик выжидает лишь короткий временной интервал SIFS, после чего передает второй кадр данных и так далее. Тем самым, передатчик не дает возможности начать передачу другим станциям — им приходится ожидать окончания общего периода такой burst-передачи.

Разумеется, общий интервал передачи данных в таком режиме ограничен (а то передача нескольких гигабайтов данных полностью бы парализовала работу остальных клиентов той же беспроводной сети). Но удаление интервала DIFS позволяет за тот же период времени передать существенно бОльшее количество данных, тем самым экономя пропускную способность канала, т.е. увеличивая общую скорость передачи данных.

Atheros заявляет, что все ее продукты данную технологию поддерживают. Но очевидно, что устройства других производителей, в которых эта технология не встроена, могут и не понять такой «разрывной» режим работы. Поэтому, если подтверждение на посланный в начале burst-режима пакет не получено получателем, передатчик отключает bursting и переходит в базовый режим работы.

Реализация Bursting у TI аналогична технологии Atheros. TI приводит следующую картинку, иллюстрирующую работу их технологии (рис 4):

TI тоже удаляют «длинный» временной фрейм ожидания, тем самым сокращая накладные расходу на передачу.

Информация о совместимости burst-технологий в реализациях от TI и Atheros на сайтах обеих компний отсутствует.

Подобная «bursing» технология, вероятно, присутствует и у других производителей. Но Atheros пошла дальше и расширила ее до «dynamic bursting». По ее заверениям, эта технология особенно эффектна в сетях с количеством работающих беспроводных клиентов больше единицы.

К примеру, в беспроводной сети две станции, одна расположена близко к точке доступа, другая удалена от нее. Разумеется, дальний клиент работает с точкой доступа на более низкой скорости (из-за расстояния). Поэтому для передачи данных определенного размера (для ближайшего клиента) ему потребуется больше времени, чем ближайшему — для приема этих данных. В этом случае активация bursting для дальней станции позволит ей сократить время передачи порции данных и, как ни странно, это же позволит ближайшей станции еще быстрее эти данные принять (так как она меньше будет ожидать на линии освобождения эфира). Интервалы, на которые клиенты могут занять эфир «burst»-передачей, также зависят от удаленности (точнее, скорости работы) клиентов. Ближайший клиент получит грант на более длинную burst-передачу, так как за единицу времени он передает больше данных (и быстрее освободит эфир).

Atheros Compression technology.

Вторая технология от Atheros, расширяющая стандарт 802.11 — аппаратная компрессия данных. Она встроена во все 802.11a,b,g чипсеты компании. Используемый алгоритм — Lempel Ziv. Этот же алгоритм используется в архиваторах gzip, pkzip, winzip. Данные «на лету» упаковываются перед пересылкой и распаковываются на принимающей стороне.

К сожалению, данные предварительно не анализируются, а сжимаются все кадры подряд. Тем самым, выигрыш достигается не всегда — например, пересылка уже упакованного файла может увеличить размер передаваемых по беспроводной сети данных.

С другой стороны, хорошо подверженные компрессии данные будут переданы кадрами меньшего размера, тем самым передатчик займет меньше эфирного времени на свою передачу. Это время может быть использовано для работы других беспроводных клиентов.

Atheros Fast Frames.

Технология Fast Frames предлагает слияние двух кадров в один, большего размера. Тем самым, мы избавляемся от служебной информации (в заголовке второго пакета — остается лишь один заголовок нового кадра) и временных пауз ожидания между кадрами:

Причем размер полученного кадра-фрейма может достигать 3000 байт, что в два раза больше максимального размера кадра стандартного ethernet-пакета. Таким образом, даже если идет поток данных из проводной сети с пакетами максимального (1500 байт) размера, технология Fast Frames все равно будет работать, объединяя каждые два ethernet-пакета в один бОльшего размера. Как только FastFrames-алгоритм будет согласован между точкой доступа и станцией, все дальнейшие пересылки данных между этими двумя устройствами будут происходить с использованием таких, увеличенных вплоть до 3000 байт, кадров.

С учетом того, что Fast Frames может работать совместно с Frame Bursting, мы получаем очень неплохие результаты по скорости передачи. Кстати говоря, как заявляет Atheros, большинство производителей, реализовавших в своих чипах технологию Frame Bursting, тем не менее, не поддерживают Fast Frames. У Atheros тут все впорядке — их продукты держат и то и другое.

Технология Fast Frames — тоже часть черновой версии стандарта 802.11e. Тем не менее, ее совместимость с продуктами других производителей не гарантируется. С другой стороны, технология работает в рамках стандартных временных интервалов (в отличии от Frame Bursting, которая монопольно занимает полосу на некоторое время). Именно поэтому Fast Frames лучше вписывается в беспроводные сети, где используется оборудования различных производителей.

Texas Instruments Frame Concatenation

Технология Frame Concatenation, реализованная в продуктах компании Texas Instruments, использует те же принципы, что и Fast Frames у Atheros.

Но TI пошли дальше. У них объединению подвергаются два и более кадров (рисунок 7):

Тем самым, они выигрывают на удалении служебной информации и межкадровых интервалов ожидания от одного и более кадров. TI заявляет, что их технология Frame Concatenation будет работать с любыми 802.11b/b+/g продуктами от TI и (!)других производителей. Не совсем ясно, что они имели ввиду под другими производителями, если у последних поддержка этой технологии не будет реализована… Возможо имелась ввиду работа с кадрами, размер которых не превышал стандартного (1500 байт) размера.

В технологию Frame Concatenation заложен алгоритм, позволяющий упаковывать в мега-кадры не все пакеты подряд. Например, если в очереди отправки на заданное направление находится лишь один кадр, то он будет отослан незамедлительно. Другими словами, сливаться будут лишь те кадры, у которых одинаковый адрес получателя (destination address, в данном случае имеется ввиду MAC адрес получателя). Причем, алгоритм действует только на unicast-пакеты — широковещательные (multicast), а так же служебные пакеты отсылаются без изменений.

На данный момент, максимальный размер Concatenation-пакета может достигать 4096 байт (что косвенно говорит о том, что эта технология не совместима с подобной же технологией от Atheros).

Заключение.

Как видно, производители не дожидаются официального объявления стандартов (в данном случае 802.11e), а интегрируют новые технологии в свои продукты. В результате, с одной стороны, достигаются неплохие результаты в виде увеличения скорости, с другой — технологии различных производителей часто оказываются несовместимы друг с другом.

Не рассмотренной осталась технология агрегирования каналов у Atheros (Dynamic Turbo). Про нее — во второй части статьи.

А если к тому времени найдутся документы, описывающие реализации super/plus/etc технологий у других производителей беспроводных решений (или мне подскажут ссылки них в форуме (ссылка чуть ниже)), то обзор этих технологий также будет добавлен во вторую часть статьи.

Related posts:

  1. Как подключить триколор к интернету через wifi роутер
  2. Как подключиться к роутеру tp link
  3. Как подключиться роутеру
  4. Как пользоваться роутером мтс

Что такое tx burst в настройках роутера кинетик

Tx Burst — это режим передачи, обеспечивающий непрерывную передачу данных от интернет-центра к клиентам для увеличения пиковой скорости передачи. Для эффективной работы этого режима необходимо, чтобы беспроводной адаптер клиента поддерживал данную функцию.

Какую частоту ставить на роутере

При выборе частоты следует учитывать количество помех в помещении. Если помещение находится в шумном месте, рекомендуется использовать беспроводную сеть на частоте 5 ГГц. В противном случае, лучшим выбором будет использование частоты 2,4 ГГц.

Как ускорить загрузку роутера

Существует несколько практических советов, которые помогут ускорить загрузку роутера и сделать беспроводную сеть более эффективной:

  1. Централизуйте и поднимите маршрутизатор. Оптимальное расположение роутера — это центральное место в помещении, на высоте около 1,5 м от земли.
  2. Увеличьте скорость беспроводного интернета. Для этого убедитесь, что ваш провайдер предоставляет достаточную скорость интернета. Если у вас использована комбинированная сеть, то проверьте настройки маршрутизатора и убедитесь, что станция базовой кратности (Primary Channel) выставлена на наиболее широкий диапазон.
  3. Переставьте антенны. Часто размещение антенн на маршрутизаторе влияет на скорость соединения. Для того чтобы оценить настройки антенн, замените их местами или переместите их в пространстве.
  4. Настройте защиту беспроводной сети. Для предотвращения несанкционированного доступа к сети установите пароль и скрытие SSID.
  5. Используйте программа для построения тепловых схем. Эти программы позволяют определить наилучший способ размещения антенн и ширину каналов в зависимости от особенностей помещения.
  6. Переключитесь на частоту 5 ГГц. Дело в том, что данная частота обеспечивает более высокую скорость передачи данных и более малое количество помех.
  7. Обновите свой маршрутизатор. Регулярно проверяйте наличие новых версий прошивки вашего маршрутизатора. Установка новой версии может улучшить работу устройства и ускорить передачу данных.
  8. Сделайте из старого роутера репитер Wi-Fi. Если у вас есть старый маршрутизатор, вы можете использовать его в качестве репитера Wi-Fi, кто увеличит зону покрытия сети.

Что происходит при перезагрузке роутера

Перезагрузка роутера позволяет очистить его память от ошибок и другой накопившейся информации. Кроме того, это действие способствует восстановлению сетевого соединения. Таким образом, после перезагрузки роутера можно ожидать увеличения скорости передачи данных.

Как сбросить ошибки роутера

Для сброса ошибок роутера необходимо отключить провод питания и нажать кнопку Reset. После этого нужно не отпуская кнопки, подключить кабель питания к роутеру и продолжать держать кнопку Reset в течение 35 секунд. Затем можно отпустить кнопку и дождаться полной загрузки устройства.

Результаты

Tx Burst — это режим передачи данных, который позволяет увеличить скорость передачи между интернет-центром и клиентами. Чтобы сделать беспроводную сеть более эффективной, нужно выбрать оптимальную частоту и настроить роутер для максимальной производительности. Регулярная перезагрузка и сброс ошибок помогут поддерживать высокую скорость передачи данных.

Что такое порог RTS в роутере

Порог RTS в роутере — это задержка, которую точка доступа устанавливает перед отправкой запроса на пересылку клиенту. Запрос RTS (Request to Send) обычно посылается для того, чтобы предупредить получателя о наступлении передачи данных. Задержка, установленная на пороге RTS, может управлять длительностью этого процесса. В зависимости от конфигурации устройства, это время может изменяться. Этот механизм встроен в процессоры многих видов роутеров и используется для оптимизации процесса обмена данными между точкой доступа и клиентом. Настройка порога RTS важна для оптимизации скорости передачи данных, так как она позволяет контролировать количество запросов RTS в процессе передачи и улучшать эффективность обмена информацией.

Какой пароль от роутера Промсвязь

Для того чтобы получить доступ к настройкам роутера Промсвязь, нужно ввести определенные данные. Сначала появляется окно, где нужно ввести логин admin, а затем пароль admin, написанный маленькими буквами на английском языке. После этого нажимаем на кнопку OK. Теперь открывается Web-интерфейс, где мы сможем проводить все дальнейшие настройки и установку необходимых данных. Настройка модема через этот интерфейс очень важна и поможет обеспечить правильную работу роутера. Кроме того, это также позволяет защитить вашу сеть от несанкционированного доступа и других возможных угроз из интернета. Следование этим простым шагам позволит получить полный контроль над вашей домашней Wi-Fi-сетью.

Как сбросить репитер до заводских настроек

Для сброса репитера до заводских настроек можно воспользоваться двумя способами. Первый способ — через панель управления, которую можно найти в настройках самого репитера. Для этого следует найти пункт «Сброс до заводских настроек» и подтвердить свой выбор. Второй способ — с помощью кнопки RESET, которая находится на самом устройстве. Для этого нужно включить репитер и на несколько секунд нажать на кнопку RESET, которая расположена снизу устройства, используя что-то острое, например, шил или ножницы. Все индикаторы загорятся, а ретранслятор перезагрузится, после чего настройки будут сброшены к заводским. Эти простые действия помогут вернуть репитер в исходное состояние и начать настройку с чистого листа.

Что делает кнопка сброс на роутере

Кнопка сброс на роутере имеет важное назначение. Она позволяет аппаратно перезагрузить устройство и вернуть все настройки к заводским значениям. Ее использование могут потребоваться в различных ситуациях. Например, если роутер не работает должным образом или на нем возникли ошибки при настройке, то кнопка RESET поможет вернуть все в порядок. Для сброса настроек достаточно удерживать кнопку в течение нескольких секунд. В результате роутер будет перезагружен и все данные, настройки и пароли устройства будут удалены. Поэтому, перед использованием кнопки RESET, нужно сохранить важные настройки и пароли на внешнем носителе. В целом, кнопка сброса на роутере является полезной опцией, которая помогает вернуть устройство в работоспособное состояние.

Tx Burst — это режим непрерывной передачи данных, который используется в роутерах для увеличения пиковой скорости передачи данных от интернет-центра к клиентам, подключенным по протоколам 802.11n/ac. Этот режим позволяет увеличить исходящую скорость, что особенно важно при работе с большим объемом данных. Однако, эффективность работы Tx Burst зависит от возможностей беспроводного адаптера клиента, в частности, от его скорости и качества сигнала. Чтобы достичь максимальной производительности и стабильной работы, необходимо учитывать множество факторов, таких как расстояние до роутера, наличие помех и препятствий, а также тип используемого оборудования. В целом, Tx Burst является одним из методов оптимизации работы беспроводных сетей и позволяет получать более быстрый и стабильный интернет-сигнал.

Роутеры — это сетевые устройства, которые играют важную роль в современных коммуникационных системах. Они обеспечивают соединение между различными компьютерами и устройствами в сети, позволяя им обмениваться данными и получать доступ к интернету. Роутеры осуществляют пересылку пакетов данных по оптимальным маршрутам, выбирая наиболее эффективный путь для доставки информации. Благодаря своей функциональности и гибкости, роутеры стали неотъемлемой частью современных домашних и офисных сетей, обеспечивая стабильное и быстрое подключение к интернету и эффективное управление сетевым трафиком.

Настройки роутера tx burst

Tx Burst — это режим передачи, обеспечивающий непрерывную передачу данных от интернет-центра к клиентам для увеличения пиковой скорости передачи. Для эффективной работы этого режима необходимо, чтобы беспроводной адаптер клиента поддерживал данную функцию.

Какую частоту ставить на роутере

При выборе частоты следует учитывать количество помех в помещении. Если помещение находится в шумном месте, рекомендуется использовать беспроводную сеть на частоте 5 ГГц. В противном случае, лучшим выбором будет использование частоты 2,4 ГГц.

Как ускорить загрузку роутера

Существует несколько практических советов, которые помогут ускорить загрузку роутера и сделать беспроводную сеть более эффективной:

  1. Централизуйте и поднимите маршрутизатор. Оптимальное расположение роутера — это центральное место в помещении, на высоте около 1,5 м от земли.
  2. Увеличьте скорость беспроводного интернета. Для этого убедитесь, что ваш провайдер предоставляет достаточную скорость интернета. Если у вас использована комбинированная сеть, то проверьте настройки маршрутизатора и убедитесь, что станция базовой кратности (Primary Channel) выставлена на наиболее широкий диапазон.
  3. Переставьте антенны. Часто размещение антенн на маршрутизаторе влияет на скорость соединения. Для того чтобы оценить настройки антенн, замените их местами или переместите их в пространстве.
  4. Настройте защиту беспроводной сети. Для предотвращения несанкционированного доступа к сети установите пароль и скрытие SSID.
  5. Используйте программа для построения тепловых схем. Эти программы позволяют определить наилучший способ размещения антенн и ширину каналов в зависимости от особенностей помещения.
  6. Переключитесь на частоту 5 ГГц. Дело в том, что данная частота обеспечивает более высокую скорость передачи данных и более малое количество помех.
  7. Обновите свой маршрутизатор. Регулярно проверяйте наличие новых версий прошивки вашего маршрутизатора. Установка новой версии может улучшить работу устройства и ускорить передачу данных.
  8. Сделайте из старого роутера репитер Wi-Fi. Если у вас есть старый маршрутизатор, вы можете использовать его в качестве репитера Wi-Fi, кто увеличит зону покрытия сети.

Что происходит при перезагрузке роутера

Перезагрузка роутера позволяет очистить его память от ошибок и другой накопившейся информации. Кроме того, это действие способствует восстановлению сетевого соединения. Таким образом, после перезагрузки роутера можно ожидать увеличения скорости передачи данных.

Как сбросить ошибки роутера

Для сброса ошибок роутера необходимо отключить провод питания и нажать кнопку Reset. После этого нужно не отпуская кнопки, подключить кабель питания к роутеру и продолжать держать кнопку Reset в течение 35 секунд. Затем можно отпустить кнопку и дождаться полной загрузки устройства.

Результаты

Tx Burst — это режим передачи данных, который позволяет увеличить скорость передачи между интернет-центром и клиентами. Чтобы сделать беспроводную сеть более эффективной, нужно выбрать оптимальную частоту и настроить роутер для максимальной производительности. Регулярная перезагрузка и сброс ошибок помогут поддерживать высокую скорость передачи данных.

Как усилить мощь передачи роутера

Для увеличения мощности передачи сигнала роутера рекомендуется подключить антенну к устройству. Многие модели маршрутизаторов поставляются с небольшими антеннами, усиление которых равно примерно 4-5 дБи. Если заменить такую антенну на другую, которая имеет увеличенное усиление до 9 дБи, то это позволит расширить зону покрытия Wi-Fi в доме и улучшить скорость передачи сигнала. Также следует убедиться, что роутер размещен в наиболее открытом и высоком месте в помещении, чтобы сигнал мог свободно распространяться, не встречая помех. Если возможно, рекомендуется использовать более современный маршрутизатор, который обеспечивает более быструю передачу данных и лучшую производительность в целом.

Что будет при перезагрузке роутера

Перезагрузка роутера — это значительно проще, чем многие полагают. Такое действие необходимо выполнить для того, чтобы очистить память роутера от накопившейся информации, включая ошибки, а также чтобы восстановить сетевое соединение. Кроме того, в большинстве случаев после перезагрузки роутера скорость интернета заметно увеличивается. Особенно, если его память перегружена обработкой большого количества данных. Именно поэтому владельцам роутеров рекомендуется периодически проводить перезагрузку устройства, например, раз в несколько дней или недель. Это очень просто сделать, достаточно лишь нажать на кнопку, которая отвечает за перезагрузку, либо выключить и включить устройство. Таким образом, перезагрузка роутера является неотъемлемой частью его обслуживания и гарантирует его бесперебойную работу.

Какую скорость выбрать для роутера

Когда выбираем роутер для домашней сети, важно учитывать скорость интернета, которую он поддерживает. В наше время оптимальным вариантом считается скорость в 100 Мбит/с. Такая скорость позволяет комфортно пользоваться интернетом, смотреть видео высокого качества и общаться в социальных сетях. Если скорость будет ниже, то могут возникать проблемы с загрузкой страниц и поиском информации в сети.

Однако, если вы занимаетесь онлайн-играми, транслируете видео или работаете с большим объемом данных, то можно выбрать более высокую скорость. В целом, всегда стоит выбирать скорость интернета в зависимости от своих потребностей и возможностей. Но если говорить о наиболее оптимальной скорости для большинства пользователей, то это 100 Мбит/с, который не только обеспечивает необходимую скорость, но и является наиболее выгодным вариантом по цене.

Как разогнать скорость роутера

Для увеличения скорости интернета через Wi-Fi-роутер можно применить несколько способов. В первую очередь, важно разместить роутер в центре квартиры и поднять на высоту, чтобы сигнал не затруднялся препятствиями. Дальше, можно попробовать изменить расположение антенн, нацелив их в нужном направлении для улучшения связи. Также необходимо правильно настроить защиту беспроводной сети, чтобы исключить доступ неавторизованных пользователей. Рекомендуется использовать специальную программу для построения тепловых схем и определения зон лучшего приема сигнала. Если роутер поддерживает частоту 5 ГГц, стоит переключиться на нее, так как она обеспечивает более быстрое подключение. Наконец, следует обновить прошивку маршрутизатора, чтобы избежать ошибок и улучшить работу устройства.

Tx Burst — это режим непрерывной передачи данных, который используется в роутерах для увеличения пиковой скорости передачи данных от интернет-центра к клиентам, подключенным по протоколам 802.11n/ac. Этот режим позволяет увеличить исходящую скорость, что особенно важно при работе с большим объемом данных. Однако, эффективность работы Tx Burst зависит от возможностей беспроводного адаптера клиента, в частности, от его скорости и качества сигнала. Чтобы достичь максимальной производительности и стабильной работы, необходимо учитывать множество факторов, таких как расстояние до роутера, наличие помех и препятствий, а также тип используемого оборудования. В целом, Tx Burst является одним из методов оптимизации работы беспроводных сетей и позволяет получать более быстрый и стабильный интернет-сигнал.

Роутеры — это сетевые устройства, которые играют важную роль в современных коммуникационных системах. Они обеспечивают соединение между различными компьютерами и устройствами в сети, позволяя им обмениваться данными и получать доступ к интернету. Роутеры осуществляют пересылку пакетов данных по оптимальным маршрутам, выбирая наиболее эффективный путь для доставки информации. Благодаря своей функциональности и гибкости, роутеры стали неотъемлемой частью современных домашних и офисных сетей, обеспечивая стабильное и быстрое подключение к интернету и эффективное управление сетевым трафиком.

Ускоряем домашний интернет

Широкополосный доступом в интернет в наше время никого не удивишь. В большинстве городов работает несколько провайдеров, подключающих всех желающих по медному или оптическому кабелю. В сельской местности ситуация хуже, но и там как правило есть вариант подключиться к интернету через радиоканал или сотового оператора. Для совсем уж глухих районов всегда остается вариант с подключением через спутник.

Итак, предположим что вы подключены по кабелю к сети интернет с достаточно скоростным тарифом. Но при этом у вас медленно открываются сайты или тормозит воспроизведение видео с ютуба. SpeedTest показывает цифры, далекие от вашего тарифного плана. Почему так получается и в чем могут быть причины?

На самом деле причин может быть множество, от проблем с оборудованием у провайдера до неправильного расположения и настройки вашего роутера или проблем с конкретным сетевым устройством. Попробую описать наиболее частые причины и варианты решения.

Первым делом конечно стоит позвонить провайдеру и выполнить его рекомендации. Если это не помогает, а он уверяет что на его стороне все в порядке, вероятно проблема на вашей. Будем ее выявлять.

Для начала стоит определиться, проблема со скоростью существует на всех устройствах или только на некоторых? Если на всех, то скорее всего проблема в роутере. Чтобы узнать точно, подключаем компьютер напрямую к кабелю от провайдера, настраиваем сетевые параметры, выданные провайдером и проверяем. Если все осталось по-прежнему, проблема все-таки у провайдера, вызываем их специалиста и пусть он решает. Если проблема исчезла — неисправен или плохо настроен роутер. Можно попробовать сбросить его настройки до заводских кнопкой reset, а затем заново настроить сетевые адреса провайдера, не меняя других настроек. Стоит также обновить прошивку роутера, если есть более свежая. Если роутер старый, велика вероятность его физической поломки, тут уже вряд ли что-то сделаешь, разве что попробовать включить его через другой блок питания — порой проблемы в работе роутера таятся именно в нем.

Если же при подключении по кабелю к роутеру скорость хорошая, а по wi-fi — никакая, соответственно проблема в расположении или настройках wi-fi роутера. Роутер желательно располагать ближе к центру помещения, чтобы покрытие беспроводной сети во всех точках было хорошим. При низкой скорости даже вблизи от маршрутизатора, попробуем улучшить ситуацию настройками. Для начала нужно просканировать эфир на предмет свободных каналов. Сделать это проще всего программой на смартфоне, например WIFI Analyzer, она есть и для андроид смартфонов, и для Apple. Запустив ее, вероятно увидим нечно подобное:

Tx burst keenetic что это?

Tx burst — это функция, которая может быть включена или выключена в настройках беспроводной сети на роутере Keenetic. Tx burst предназначена для улучшения производительности WiFi сети, позволяя передавать пакеты данных с более высокой скоростью. В простых словах, это технология, которая позволяет увеличить скорость передачи данных с устройства на роутер и обратно, в то время как другие устройства в сети продолжают свою работу. Однако, стоит отметить, что включение этой функции может иметь некоторые негативные последствия, такие как более высокая задержка и нестабильное соединение. Поэтому, если вы заметили проблемы с работой сети, необходимо выключить функцию Tx burst и проверить, решит ли это проблему.

Вы должны войти или зарегистрироваться, чтобы добавить ответ.

Что можно сделать из неодимовых магнитов?

Вот некоторые из возможных использований неодимовых магнитов: Электроника: Неодимовые магниты широко применяются в различных устройствах электроники, включая динамики, микрофоны, наушники, магнитные дисковые накопители и твердотельные диски. Медицина: В медицинской технике неодимовые . Читать далее

Как разобрать ps4 slim и почистить от пыли?

Я могу помочь вам разобрать PS4 Slim и очистить его от пыли. Вот пошаговая инструкция: Подготовка: Перед началом работы убедитесь, что у вас есть все необходимые инструменты — крестовая отвертка PH1 или PH2 (Phillips), пластиковая лопатка или открывалка для снятия крышки и ватные палочки или . Читать далее

Tx burst keenetic что это?

Tx burst — это функция, которая может быть включена или выключена в настройках беспроводной сети на роутере Keenetic. Tx burst предназначена для улучшения производительности WiFi сети, позволяя передавать пакеты данных с более высокой скоростью. В простых словах, это технология, которая позволяет увеличить скорость передачи данных с устройства на роутер и обратно, в то время как другие устройства в сети продолжают свою работу. Однако, стоит отметить, что включение этой функции может иметь некоторые негативные последствия, такие как более высокая задержка и нестабильное соединение. Поэтому, если вы заметили проблемы с работой сети, необходимо выключить функцию Tx burst и проверить, решит ли это проблему.

Tx burst keenetic что это

Увеличить или уменьшить мощность wifi роутера, а точнее сигнала передатчика (TX Power), часто бывает необходимо при настройке беспроводной сети. Например, для того, чтобы сигнал не ловил в коридоре или в соседней квартире. Чтобы не провоцировать потенциальных злоумышленников на попытки взлома вашего вайфая. Но обычно пользователи спрашивают, как сделать беспроводной сигнал сильнее и тем самым расширить зону приема от роутеров TP-Link, Asus, Zyxel Keenetic, D-Link, Tenda, Upvel.

Что такое TX Power?

TX Power — это мощность сигнала роутера, а точнее его передатчика wifi.

Хотя этот термин в интерфейсе администраторской части может и не встречаться. Но он всегда измеряется в таких единицах, как «dBm». То есть «децибел на метр». Например, в технических характеристиках передатчика пишут — 20 dBm, 30 dBm и так далее. В разных странах даже есть законы, ограничивающие это максимальное значение.

Какую страну выбрать в настройках wifi для максимальной мощности?

Если вы меня спросите, какую страну необходимо выбрать для обеспечения максимальной мощности соединения с интернетом по вай-фай, то на данный момент их 6:

  • Япония
  • Австралия
  • Южная Корея
  • Новая Зеландия
  • США
  • Сингапур

Выбирайте одну из них, и получите наилучшую силу беспроводной сети на определенных каналах. Ниже привожу таблицу с разрешенными каналами и мощностью:

Страна Поддиапазон (МГц) Канал
Австралия 915 — 920 1, 2, 4
920 — 928 1, 2, 4, 8
Япония 916.5 — 927.5 1
Ю. Корея 917 — 923 1, 2, 4
Новая Зеландия 915 — 924 1, 2, 4, 8
924 — 928 1, 2, 4
Сингапур 866 — 869 1, 2
920 — 925 1, 2, 4
США 902 — 904 1, 2
904 — 920 1, 2, 4, 8, 16
920 — 928 1, 2, 4, 8

Также иногда в интерфейсе маршрутизатора можно встретить такое понятие, как «TX Burst», то есть увеличение мощности передатчика wifi.

Но это все только теория. А у нас, практиков, возникает резонный вопрос — 20 dbm, это сколько метров? Ответить на него однозначно невозможно. Ведь зона приема очень сильно зависит не только от самого передатчика сигнала, но и от множества других факторов. Например, препятствия или перегородок, находящихся на пути от источника к приемнику. Или от окружающих электромагнитных волн, которые могут наводить помехи.

В настройках марштуризатора мы же можем принудительно уменьшить или усилить TX Power. Свойство снижать мощность сигнала сильно пригодится тем, кто считает, что wifi — это вредно для здоровья. И хотя на многих маршрутизаторах существует возможность отключать его по расписанию, возможность сделать беспроводной сигнал на одно-два деления меньше тоже не помешает, тем более, если у вас квартира небольшая.

Как пользоваться TX Power на роутере TP-Link — регулировка мощности сигнала wifi

На роутере TP-Link регулировка мощности wifi сигнала ограничена тремя предустановленными настройками TX Power:

Находятся они в разделе «Дополнительные настройки — Беспроводной режим»

Управление мощностью сигнала TX Power на роутере Asus

На маршрутизаторе Asus настройки выходной мощности находятся в разделе «Беспроводная сеть», во вкладке «Профессионально», но имеется не во всех моделях. Здесь если прокрутить страницу в самый низ, то увидите последний пункт «Управление мощностью сигнала TX Power». В некоторых роутера Asus мощность wifi нужно прописать самостоятельно в цифрах в видео единиц измерения mW — максимально 200mW.

В других это сделано более наглядно в виде ползунка в процентах от максимальной мощности сигнала

Настройка мощности сигнала wifi на роутере Zyxel Keenetic

Для того, чтобы увеличить или уменьшить мощность wifi на роутере Zyxel Keenetic, нужно пройти в меню «Сеть Wi-Fi» и среди всех прочих настроек найти строку «Мощность сигнала». Здесь из выпадающего списка выбираем необходимое значение в %.

Если вы являетесь владельцем более современного маршрутизатора Keenetic, то для регулировки TX Power открываем меню «Домашняя сеть» и далее кликаем на ссылку «Дополнительные настройки».

Здесь есть сразу две возможности ослабить или усилить сигнал. Во-первых, выбрать уровень его мощности в процентах. Во-вторых, поставить флажок на «TX Burst» для увеличения пиковой скорости передачи данных

TX мощность wifi сигнала на роутере D-Link

У D-Link все выглядит аналогично — в разделе «WiFi — Дополнительные настройки» также выбираем в процентах «TX мощность»

Мощность передачи на роутере Tenda

На роутере Tenda уменьшить мощность сигнала WiFi (если такая функция есть в вашей модели) можно в разделе «Настройки WiFi — Мощность передачи»

На модели Tenda AC6 доступны несколько фиксированных позиций уровня сигнала

Для небольшой квартиры вполне достаточно уменьшить мощность wifi до средних настроек.

Те же самые параметры для регулировки мы наблюдаем и в мобильном приложении Tenda для управления роутером с телефона.

Есть три режима, которые можно выбрать прямо на смартфоне, не заходя в десктопную версию админки

Мощность передатчика Mercusys

На маршрутизаторах Mercusys на выбор также предоставляется три режима мощности работы передатчика сигнала WiFi.Находится настройка в разделе «Основная сеть»

Выходная мощность сигнала Upvel

Для регулировки дальности сигнала от роутера Upvel необходимо открыть «Дополнительные настройки» в разделе «Wi-Fi сеть». Выставляем нужную величину в меню «Выходная радиочастотная мощность». Здесь градаций намного больше — целых 5, выраженных в процентном соотношении.

Актуальные предложения:
  • 10 лет занимается подключением и настройкой беспроводных систем
Отрегулировать мощность передатчика роутера

Мощность передатчика определяет энергетику радиотракта и напрямую влияет на радиус действия точки доступа: чем более мощный луч, тем дальше он бьет. Но этот принцип бесполезен в случае всенаправленных антенн бытовых роутеров: в беспроводной передаче происходит двусторонний обмен данными и не только клиенты должны “услышать” роутер, но и наоборот.

Асимметрия: роутер “дотягивается” до мобильного устройства в дальней комнате, но не получает от него ответ из-за малой мощности WiFi-модуля смартфона. Соединение не устанавливается.

На практике: Рекомендуемое значение мощности передатчика — 75%. Повышать ее следует только в крайних случаях: выкрученная на 100% мощность не только не улучшает качество сигнала в дальних комнатах, но даже ухудшает стабильность приема вблизи роутера, т. к. его мощный радиопоток “забивает” слабый ответный сигнал от смартфона. Array

Настройка мощности сигнала wifi на роутере Zyxel Keenetic

Для того, чтобы увеличить или уменьшить мощность wifi на роутере Zyxel Keenetic, нужно пройти в меню «Сеть Wi-Fi» и среди всех прочих настроек найти строку «Мощность сигнала». Здесь из выпадающего списка выбираем необходимое значение в %.

Если вы являетесь владельцем более современного маршрутизатора Keenetic, то для регулировки TX Power открываем меню «Домашняя сеть» и далее кликаем на ссылку «Дополнительные настройки».

Здесь есть сразу две возможности ослабить или усилить сигнал. Во-первых, выбрать уровень его мощности в процентах. Во-вторых, поставить флажок на «TX Burst» для увеличения пиковой скорости передачи данных

Размещение маршрутизатора в квартирном помещении: вред

Многие подумывают о том, чтобы отказаться от применения ТВ, микроволновки, смартфона и других электроприборов. Каждый из них облучает и оказывает действие на организм. Но опасность такая слабая, что привести к каким-то патологиям не может

Важно только соблюдать определенные рекомендации, которые сократят действие электромагнитных волн

Рак никак не связан с вай-фаем. Раковые клетки растут из-за сильного электромагнитного облучения, но роутеры дают низкий фон. Волны безвредны для крови. Поэтому можно не опасаться онкологии крови и прочих патологий кровеносных сосудов.

Единственное, на что влияет облучение, — это человеческое зрение. Однако здесь связь незначительная. Вай-фай заставляет человека чаще быть в глобальной паутине, из-за чего снижается зрение. Но это связь относится и к другой технике:

Важно! Особенной опасности вреда от маршрутизатора нет. Главное, не располагать устройство близко, безопасное расстояние — 2-3 метра

Перепалата за бренд

Существует распространенное мнение, что хорошим качеством сборки wifi роутеров могут похвастаться только известные производители. Это в корне неверное решение. Хорошие модели есть у любого, даже самого малоизвестного бренда

Главное — это обращать внимание непосредственно на характеристики конкретной модели: какой стоит процессор, объем памяти, тип скоростного стандарта

Например, самые распространенные роутеры от компании D-Link часто имеют проблемы с беспроводной связью и требуют перепрошивки. Большой процент брака встречается и в аппаратной части устройства. TP-Link — в этом плане немного качественнее и брак в моделях встречается намного реже. Особенно это касается более дорогих моделей.

Что касается компаний Asus, Linksys, Zyxel — сами по себе они относятся к более дорогому классу, поэтому и процент неисправностей в моделях роутеров встречается довольно редко. Тем не менее, не стоит удивляться проблемам с прошивкой ли любым другим, когда вы решаете купить начальные (самые дешевые) модели роутера от любого бренда. На таких устройствах любой производитель старается максимально сэкономить.

Если у вас сильно ограничен бюджет, то стоит выбрать не на начальные модели от известных брендов, а на продвинутые от китайских производителей. Например, Tenda или Upvel. Цена на такие девайсы значительно ниже, но при этом пользователь получит вполне внушительное устройство с хорошей аппаратной частью. Тем более, что китайская техника уже давно избавилась от своего клейма “некачественной”.

Скорость на минимальной и максимальной дистанции в квартире.

Опасность излучения от WiFi роутера

Людям интересно, сильно ли опасен Wi-Fi, сколько можно находиться по времени рядом с ним? Некоторые устройства обладают высокой частотой и волны влияют на здоровье организма.

Важно Большое количество ученых высказало своё мнение, что излучение стандарта 4G затрагивает практически все функции мозга

  • сонливость;
  • риск стресса;
  • повышенный метаболизм;
  • влияние на ДНК;
  • плохая выработка глюкозы.

Люди, постоянно взаимодействующие с маршрутизаторами, раздражительны. Избыток сигнала отражается по-разному. У людей иногда болит голова или они жалуются на плохое пищеварение. Вечером невозможно заснуть, приходит бессонница. Постоянный срыв работы мозга приводит к образованию опухолей.

Методика расчета эффективного расстояния

Допустим, беспроводная связь работает, когда расстояние между точкой доступа и смартфоном равно N метров при отсутствии препятствий на пути сигнала. Таблица, из которой можно выяснить, во сколько раз снижается интенсивность при прохождении того или иного препятствия, есть на нескольких сайтах (например, ZyXEL). В то же время, известно, что снижение интенсивности в 2 раза (на 3 децибела) эквивалентно уменьшению эффективного расстояния N в корень из двух раз. Все просто – квадрат расстояния обратно пропорционален интенсивности.

Что означает число N

При прохождении сигналом стеклянного окна интенсивность снижается как раз на 3 дБ, а значит, эффективное расстояние уменьшается в корень из двух раз. Пользуясь этой методикой, можно рассчитать, на какой дистанции связь Wi-Fi все еще будет работать в той или иной ситуации:

  • Окно стеклянное – снижает интенсивность на 3 дБ (в 2 раза)
  • Окно с тонировкой – 6 дБ (в 4 раза)
  • Стена из дерева – 9 дБ (в 8 раз)
  • Межкомнатная стена панельная, бетонный пол – 15-20 дБ (в 32 раза и больше).

Коэффициент, на который Вы разделите значение дистанции, равен корню квадратному из коэффициента уменьшения интенсивности. Рассмотрим пример.

Бетонные стены вносят коррективы

Допустим, N равно 400 м. Теперь мы между роутером и смартфоном «помещаем» одну панельную стену и одну стену из дерева. Сложив децибелы (15+9 дБ), получим 24 децибела. По логарифмической шкале – 24, а по линейной это эквивалентно снижению интенсивности в 251 раз. Теперь, вычисляем, чему равен корень из 251 (это 15,84). Делим 400 метров на 16, получаем 25 м. Как видите, все просто и похоже на правду.

Эффективное расстояние без препятствий

Наверное, читателя интересует, а чему же равно значение N при полном отсутствии препятствий в зависимости от выбора диапазона Wi-Fi. Если мощность передатчика роутера равна 40 мВт, а его антенна «усиливает» сигнал в горизонтальной плоскости на 3 дБ (она многозвенная), то, согласно информации ZyXEL, значение N составляет 400 метров. Смотрите: в роутере установлен менее мощный передатчик, чем в смартфоне, но в нем используется многозвенная антенна. Итого, получаем: связь между двумя устройствами Wi-Fi с мощностью передатчика 100 мВт и обычной штыревой антенной уверенно поддерживается на расстоянии до 400 м. Здесь речь шла о диапазоне 2,4 ГГц.

Тут идет речь о диапазоне 2,4 ГГц, но для более высокочастотных волн сейчас просто нет сведений об уровне влияния тех или иных препятствий. Понятно, что для диапазона 5 ГГц значение N будет меньше, а степень влияния препятствий окажется больше. Если известно, что мощность передатчика смартфона заметно меньше, чем 100 мВт, надо сделать так: необходимо 100 разделить на действительную мощность в милливаттах, и вычислить корень квадратный из полученного числа. У Вас будет поправочный коэффициент, на который требуется поделить расстояние, значение которого получено по рассмотренной методике.

Наличие доп. функционала

Более дорогие модели роутеров часто пестрят огромным количеством не совсем нужных функций. Таких, как:

  • наличие встроенных USB портов;
  • Print server, DLNA, FTTP и Samba серверы;
  • встроенный в роутер BitTorrent и так далее.

Обычно такие функции для рядовых пользователей являются совершенно бесполезными, но при этом значительно повышают стоимость устройства. Поэтому переплачивать за то, чем вы не будете пользоваться — бессмысленно. Тем более, что этот же бюджет можно потратить на расширение базового функционала: увеличить скорость передачи данных, мощность процессора.

  1. Мощность Передатчика Сигнала WiFi Роутера — Как Уменьшить или Увеличить TX Power?
  2. Что такое TX Power?
  3. Что такое мощность wifi сигнала в реальности?
  4. Как пользоваться TX Power на роутере TP-Link — регулировка мощности сигнала wifi
  5. Управление мощностью сигнала TX Power на роутере Asus
  6. Настройка мощности сигнала wifi на роутере Zyxel Keenetic
  7. Что такое tx burst в настройках роутера кинетик
  8. Быстрая настройка через Мастер первоначальной настройки.
  9. Настройка через панель роутера
  10. Что такое tx burst в настройках роутера кинетик
  11. Как подключить и настроить роутер Keenetic? Инструкция на примере Keenetic Viva
  12. Как подключить интернет-центр Keenetic?
  13. Настройка роутера Keenetic
  14. Вход в веб-интерфейс и мастер быстрой настройки
  15. Самостоятельная настройка в панели управления интернет-центра Кинетик
  16. Подключение к интернету
  17. Настройка Wi-Fi сети
  18. Как разделить Wi-Fi сети (разные имена для сети в диапазоне 2.4 ГГц и 5 ГГц)
  19. Настройка IPTV
  20. Обновление прошивки
  21. Смена пароля администратора
  22. Тест Wi-Fi-системы на базе Keenetic Ultra II и Keenetic Air (KN-1610): и стар и млад
Мощность Передатчика Сигнала WiFi Роутера — Как Уменьшить или Увеличить TX Power?

Увеличить или уменьшить мощность wifi роутера, а точнее сигнала передатчика (TX Power), часто бывает необходимо при настройке беспроводной сети. Например, для того, чтобы сигнал не ловил в коридоре или в соседней квартире. Чтобы не провоцировать потенциальных злоумышленников на попытки взлома вашего вайфая. Но обычно пользователи спрашивают, как сделать беспроводной сигнал сильнее и тем самым расширить зону приема от ротуеров TP-Link, Asus, Zyxel Keenetic, D-Link, Tenda, Upvel.

Что такое TX Power?

TX Power — это мощность сигнала роутера, а точнее его передатчика wifi.

Хотя этот термин в интерфейсе администраторской части может и не встречаться. Но он всегда измеряется в таких единицах, как «dBm». То есть «децибел на метр». Например, в технических характеристиках передатчика пишут — 20 dBm, 30 dBm и так далее. В разных странах даже есть законы, ограничивающие это максимальное значение.

Также иногда в интерфейсе маршрутизатора можно встретить такое понятие, как «TX Burst», то есть увеличение мощности передатчика wifi.

Что такое мощность wifi сигнала в реальности?

Но это все только теория. А у нас, практиков, возникает резонный вопрос — 20 dbm, это сколько метров? Ответить на него однозначно невозможно. Ведь зона приема очень сильно зависит не только от самого передатчика сигнала, но и от множества других факторов. Например, препятствия или перегородок, находящихся на пути от источника к приемнику. Или от окружающих электромагнитных волн, которые могут наводить помехи.

В настройках марштуризатора мы же можем принудительно уменьшить или усилить TX Power. Свойство снижать мощность сигнала сильно пригодится тем, кто считает, что wifi — это вредно для здоровья. И хотя на многих маршрутизаторах существует возможность отключать его по расписанию, возможность сделать беспроводной сигнал на одно-два деления меньше тоже не помешает, тем более, если у вас квартира небольшая.

Как пользоваться TX Power на роутере TP-Link — регулировка мощности сигнала wifi

На роутере TP-Link регулировка мощности wifi сигнала ограничена тремя предустановленными настройками TX Power:

Находятся они в разделе «Дополнительные настройки — Беспроводной режим»

Управление мощностью сигнала TX Power на роутере Asus

На маршрутизаторе Asus настройки выходной мощности находятся в разделе «Беспроводная сеть», во вкладке «Профессионально», но имеется не во всех моделях. Здесь если прокрутить страницу в самый низ, то увидите последний пункт «Управление мощностью сигнала TX Power». В некоторых роутера Asus мощность wifi нужно прописать самостоятельно в цифрах в видео единиц измерения mW — максимально 200mW.

В других это сделано более наглядно в виде ползунка в процентах от максимальной мощности сигнала

Настройка мощности сигнала wifi на роутере Zyxel Keenetic

Для того, чтобы увеличить или уменьшить мощность wifi на роутере Zyxel Keenetic, нужно пройти в меню «Сеть Wi-Fi» и среди всех прочих настроек найти строку «Мощность сигнала». Здесь из выпадающего списка выбираем необходимое значение в %.

Если вы являетесь владельцем более современного маршрутизатора Keenetic, то для регулировки TX Power открываем меню «Домашняя сеть» и далее кликаем на ссылку «Дополнительные настройки».

Здесь есть сразу две возможности ослабить или усилить сигнал. Во-первых, выбрать уровень его мощности в процентах. Во-вторых, поставить флажок на «TX Burst» для увеличения пиковой скорости передачи данных

Что такое tx burst в настройках роутера кинетик

Что такое tx burst в настройках роутера кинетик

1. Подключите Ethernet-кабель, входящий в Вашу квартиру, в порт 0 (голубого цвета) роутера.

Что такое tx burst в настройках роутера кинетик

2. Соедините Ethernet-кабелем сетевую карту компьютера и один из портов роутера, например порт №1, как показано на рисунке.

Быстрая настройка через Мастер первоначальной настройки.

Что такое tx burst в настройках роутера кинетик

Что такое tx burst в настройках роутера кинетик

3. Установка пароля на администратора интернет-центра.

Что такое tx burst в настройках роутера кинетик

4. В открывшемся окне выберите пункт Ethernet и нажмите кнопку Продолжить.

Что такое tx burst в настройках роутера кинетик

5. Если у Вас имеется телевизионная STB-приставка, то в следующем окне поставьте галочку и на пункте IP-телевидение. Далее нажмите Продолжить.

Что такое tx burst в настройках роутера кинетик

6. В новом окне выберите Подключаться без VLAN и нажмите Продолжить.

Что такое tx burst в настройках роутера кинетик

7. Далее выберите пункт По умолчанию. Нажмите Продолжить.

Что такое tx burst в настройках роутера кинетик

8. В ниспадающем меню Настройка IP выберите пункт Автоматическая и Продолжить.

Что такое tx burst в настройках роутера кинетик

9. Далее: Без пароля (IPoE) и нажмите кнопку Продолжить.

Что такое tx burst в настройках роутера кинетик

10. Настройка подключения к Интернету завершена. Нажмите Продолжить.

Что такое tx burst в настройках роутера кинетик

Что такое tx burst в настройках роутера кинетик

12. В поле Имя сети введите желаемое название Вашей сети Wi-Fi, в поле Ключ сети введите пароль (не менее 8 символов). Нажмите кнопку Сохранить.

Что такое tx burst в настройках роутера кинетик

13. Нажмите на кнопку Завершить настройку. Настройка роутера завершена.

Что такое tx burst в настройках роутера кинетик

Настройка через панель роутера

Что такое tx burst в настройках роутера кинетик

Что такое tx burst в настройках роутера кинетик

3. Нажмите кнопку Домашняя сеть.

Что такое tx burst в настройках роутера кинетик

4. В разделе Беспроводная сеть WI-FI (2,4 ГГЦ) нажмите кнопку Дополнительные настройки.

Что такое tx burst в настройках роутера кинетик

5. В дополнтельных настройках выполните следующие пункты:
Имя сети (SSID) и Пароль – произвольно, можно, как в регистрационной карточке.
В пункте Защита сети выберите параметр WPA2-PSK+WPA3-PSK. Страна Russian Federation.
Пункт Канал при начальной настройке оставьте с параметром Авто. Установите галочку Tx Burst.

Примечание. Если некоторые устройства не подключаются к Wi-Fi сети, нужно изменить Защиту сети на WPA2-PSK.

Далее нажмите Сохранить.

Что такое tx burst в настройках роутера кинетик

Что такое tx burst в настройках роутера кинетик

7. Отключение функции Mesh.

Что такое tx burst в настройках роутера кинетик

Что такое tx burst в настройках роутера кинетик

Что такое tx burst в настройках роутера кинетик

8. Отключение Гостевой сети.

Что такое tx burst в настройках роутера кинетик

Keenetic Start CPU: RT5350/MT5350 MIPS24Kc @360MHz (w/o HW_NAT) Flash: 4MB RAM: SDRAM 16bit 32MB

Keenetic Start II CPU: MT7628AN MIPS24Kc @575MHz (w/o HW_NAT) SPI Flash: 8MB RAM: DDR2 64MB

Keenetic 4G II CPU: RT5350/MT5350 MIPS24Kc @360MHz (w/o HW_NAT) Flash: 4MB RAM: SDRAM 16bit 32MB

Keenetic 4G III Rev. A CPU: MT7620N MIPS24Kc @580MHz (with HW_NAT) Flash: 8MB RAM: DDR1 64MB

Keenetic 4G III Rev. B CPU: MT7628N MIPS24Kc @575MHz (w/o HW_NAT) SPI Flash: 8MB RAM: DDR2 64MB

Keenetic Lite II CPU: MT7620N MIPS24Kc @580MHz (with HW_NAT) Flash: 8MB RAM: DDR1 64MB

Keenetic Lite III Rev. A CPU: MT7620N MIPS24Kc @580MHz (with HW_NAT) Flash: 8MB RAM: DDR1 64MB

Keenetic Lite III Rev. B CPU: MT7628AN MIPS24Kc @575MHz (w/o HW_NAT) SPI Flash: 8MB RAM: DDR2 64MB

Keenetic Omni CPU: MT7620N MIPS24Kc @580MHz (with HW_NAT) Flash: 8MB RAM: DDR1 64MB

Keenetic Omni II CPU: MT7620HN MIPS24Kc @580MHz (with HW_NAT) Flash: 8MB RAM: DDR1 64MB

Keenetic Extra CPU: MT7620A MIPS24Kc @580MHz (with HW_NAT) Flash: 16MB RAM: DDR2 128MB

Keenetic III CPU: MT7620A MIPS24Kc @580MHz (with HW_NAT) Flash: 16MB RAM: DDR2 128MB

Keenetic Viva CPU: MT7620A MIPS24Kc @600MHz (with HW_NAT) Flash: 16MB RAM: DDR2 128MB

Keenetic II CPU: RT6856 MIPS34Kc @700MHz (with HW_NAT) Flash: 16MB RAM: DDR2 128MB

Keenetic DSL CPU: MediaTek RT63368 MIPS 34Kc @700MHz (with HW_NAT) Flash: 16MB RAM: DDR2 SDRAM 128Mb

Keenetic VOX CPU: MediaTek RT63368 MIPS 34Kc @700MHz (with HW_NAT) Flash: 16MB RAM: DDR2 SDRAM 128Mb

Keenetic LTE CPU: MediaTek RT63368 MIPS 34Kc @700MHz (with HW_NAT) Flash: 128MB RAM: DDR2 SDRAM 128Mb

Keenetic Giga II CPU: RT6856 MIPS34Kc @700MHz (with HW_NAT) Flash: 16MB RAM: DDR2 256MB

Keenetic Ultra CPU: RT6856 MIPS34Kc @700MHz (with HW_NAT) Flash: 16MB RAM: DDR2 256MB

Keenetic Giga III CPU: MT7621ST MIPS1004Kc 880 МГц × 1 (with HW_NAT) Flash: 128MB RAM: DDR3 256MB

Keenetic Ultra II CPU: MT7621AT MIPS1004Kc 880 МГц × 2 (with HW_NAT) Flash: 128MB RAM: DDR3 256MB

Как подключить и настроить роутер Keenetic? Инструкция на примере Keenetic Viva

Хотите самостоятельно подключить и выполнить настройку роутера Keenetic? В этой подробной инструкции я покажу, как это сделать. Расскажу о всех нюансах, добавлю фото и необходимые скриншоты. Демонстрировать процесс настройки я буду на примере интернет-центра Keenetic Viva, который был куплен специально для написания этой и еще нескольких инструкций, которые я буду размещать в отдельном разделе на этом сайте. Для начала выполним подключение, затем настройку подключения к интернету с помощью Ethernet-кабеля, настроим Wi-Fi и установим пароль.

Эта инструкция подойдет практически для всех новых роутеров Keenetic, на которых установлена операционная система KeeneticOS с новым веб-интерфейсом. Для следующих моделей: Keenetic Giga (KN-1010), Ultra (KN-1810), Speedster (KN-3010), Air (KN-1611), Start KN-1111, Lite KN-1311, City (KN-1511), Omni (KN-1410), DSL (KN-2010), Duo (KN-2110), Extra (KN-1710, KN-1711), 4G (KN-1210), Hero 4G (KN-2310), Runner 4G (KN-2210). Ну и для Keenetic Viva (KN-1910), на примере которого я буду писать эту статью.

Для начала я рекомендую узнать следующую информацию:

Как правило, эту информацию можно посмотреть в договоре о подключении к интернету, или узнать у поддержки интернет-провайдера.

Как подключить интернет-центр Keenetic?

Включите адаптер питания в розетку.

Что такое tx burst в настройках роутера кинетик

Что такое tx burst в настройках роутера кинетик

Для этого чем-то острым нажмите на кнопку Reset (которая на фото ниже) и подержите ее нажатой 10-12 секунд.

Что такое tx burst в настройках роутера кинетик

После подключения к роутеру доступа к интернету может не быть. Это потому, что роутер еще не настроен. В веб-интерфейс интернет-центра можно зайти без доступа к интернету.

Настройка роутера Keenetic

Выполнить настройку можно двумя способами:

Я покажу оба варианта. Но сначала нам необходимо получить доступ к странице с настройками интернет-центра.

Вход в веб-интерфейс и мастер быстрой настройки

Чтобы открыть настройки роутера Keenetic, нужно в браузере на подключенном к роутеру устройстве перейти по адресу my.keenetic.net или 192.168.1.1.

Что такое tx burst в настройках роутера кинетик

На начальной странице нужно выбрать язык. Там же можно «Начать быструю настройку», или сразу перейти в панель управления. Так как сначала я покажу, как выполнить установку роутера через мастер быстрой настройки, то нажимаем на кнопку «Начать быструю настройку». После чего нужно принять лицензионное соглашение.

Что такое tx burst в настройках роутера кинетик

Дальше устанавливаем пароль администратора. Придумайте пароль и укажите его два раза в соответствующих полях. Этот пароль в дальнейшем будет использоваться для входа в веб-интерфейс интернет-центра. Логин (имя пользователя) – admin.

Что такое tx burst в настройках роутера кинетик

Выбираем способ подключения к интернету. В этой инструкции я буду показывать настройку подключения через Ethernet-кабель. Этот кабель мы уже подключили в соответствующий порт на роутере.

Что такое tx burst в настройках роутера кинетик

Выбираем, что настраивать. У меня только «Интернет». Если ваш интернет-провайдер предоставляет услугу IPTV, то можете выбрать еще и «IP-телевидение» и сразу настроить просмотр ТВ каналов.

Что такое tx burst в настройках роутера кинетик

Дальше у нас настройки MAC-адреса. Если ваш интернет-провайдер не делает привязку по MAC-адресу, то выбираем «По умолчанию» и продолжаем настройку. Если делает привязку, то есть два варианта:

Что такое tx burst в настройках роутера кинетик

Что такое tx burst в настройках роутера кинетик

У меня, например, «Без пароля».

Что такое tx burst в настройках роутера кинетик

В этом случае дополнительные настройки задавать не нужно.

Что такое tx burst в настройках роутера кинетик

Эти данные выдает интернет-провайдер.

Что такое tx burst в настройках роутера кинетик

Затем нужно указать имя пользователя и пароль.

Что такое tx burst в настройках роутера кинетик

Если все настроили правильно, то наш Keenetic должен сообщить: «Вы подключены к интернету» В моем случае он сразу загрузил и установил обновление программного обеспечения.

Что такое tx burst в настройках роутера кинетик

После перезагрузки настройка продолжилась. Нужно задать параметры защиты домашней сети. Настроить фильтр Яндекс.DNS или AdGuard DNS. Я не настраивал фильтр. Просто выбрал «Без защиты».

Что такое tx burst в настройках роутера кинетик

Меняем имя Wi-Fi сети, которую будет раздавать наш маршрутизатор и пароль к ней.

Что такое tx burst в настройках роутера кинетик

Что такое tx burst в настройках роутера кинетик

После повторного подключения должна открыться панель управления.

Что такое tx burst в настройках роутера кинетик

Быстрая настройка роутера Keenetic завершена.

Самостоятельная настройка в панели управления интернет-центра Кинетик

При первом входе веб-интерфейс (когда роутер еще на заводских настройках) мы можем сразу перейти в панель управления. То есть, пропустить мастер быстрой настройки.

Что такое tx burst в настройках роутера кинетик

Что такое tx burst в настройках роутера кинетик

В панели управления, на главном экране отображается вся основная информация о работе интернет-центра и о подключенных устройствах.

Что такое tx burst в настройках роутера кинетик

Если вы настраиваете свой роутер Keenetic самостоятельно, пропустили мастер быстрой настройки, то нужно выполнить две основные настройки:

Подключение к интернету

Что такое tx burst в настройках роутера кинетик

Дальше устанавливаем следующие настройки:

Еще раз проверяем все настройки и нажимаем на кнопку «Сохранить».

Что такое tx burst в настройках роутера кинетик

Что такое tx burst в настройках роутера кинетик

Если PPTP или L2TP – нужно указать адрес сервера, имя пользователя и пароль.

Что такое tx burst в настройках роутера кинетик

В разделе «Системный монитор» должно быть написано «Подключено. «.

Что такое tx burst в настройках роутера кинетик

Если у вас не получается настроить интернет, то вы можете обратиться в поддержку своего интернет-провайдера. Они подскажу вам, какие настройки и где нужно указать. Или пишите в комментариях, постараюсь помочь.

Настройка Wi-Fi сети

Перейдите в раздел «Мои сети и Wi-Fi» – «Домашняя сеть». Там я рекомендую оставить все настройки как есть (по умолчанию) и сменить только имя сети и/или пароль.

Что такое tx burst в настройках роутера кинетик

По умолчанию установлено одинаковое имя Wi-Fi сети и пароль для сети в диапазоне 2.4 ГГц и 5 ГГц. Включена функция Band Steering, которая автоматически определяет диапазон для каждого подключенного к роутеру устройства. То есть, устройства видят одну сеть, подключаются к ней, но могут автоматически переключаться между диапазоном 2.4 ГГц и 5 ГГц.

Как разделить Wi-Fi сети (разные имена для сети в диапазоне 2.4 ГГц и 5 ГГц)

Нужно открыть дополнительные настройки сети в диапазоне 5 ГГц.

Что такое tx burst в настройках роутера кинетик

Дальше просто меняем имя сети в диапазоне 5 ГГц. Пароль можно оставить такой же, как для диапазона 2.4 ГГц.

Что такое tx burst в настройках роутера кинетик

Настройка IPTV

Для настройки IPTV (если ваш интернет-провайдер предоставляет эту услугу) перейдите в раздел «Интернет» – «Проводной». Там можно выделить любой Ethernet-порт (кроме 0, куда подключен интернет) под подключение ТВ-приставки.

Что такое tx burst в настройках роутера кинетик

Если ваш провайдер выдал вам параметры VLAN, то их нужно прописать в настройках. Для этого нажмите на «VLAN для интернета, IP-телефонии и IP-телевидения». Пропишите значения WLAN, которые предоставил интернет-провайдер.

Что такое tx burst в настройках роутера кинетик

Для сохранения настроек нажмите на кнопку «Сохранить».

Обновление прошивки

Интернет-центры Keenetic автоматически загружают и устанавливают обновление ПО. По умолчанию включено автоматическое обновление. Чтобы проверить, есть ли новая версия прошивки, или сменить какие-то настройки связанные с обновлением KeeneticOS нужно перейти в раздел «Управление» – «Общие настройки». Роутер сразу начнет проверять наличие новой версии ПО.

Что такое tx burst в настройках роутера кинетик

Смена пароля администратора

Сменить пароль администратора интернет-центра Keenetic можно в разделе «Управление» – «Пользователи и доступ». Выберите свою учетную запись.

Что такое tx burst в настройках роутера кинетик

Дальше придумайте и два раза укажите пароль.

Что такое tx burst в настройках роутера кинетик

Сохраните настройки. Постарайтесь не забыть этот пароль. Если это случиться, то вы не сможете получить доступ к настройкам роутера. Придется делать полный сброс настроек.

Оставляйте комментарии! Оставляйте свои отзывы и впечатления от роутера Keenetic. Задавайте вопросы.

Тест Wi-Fi-системы на базе Keenetic Ultra II и Keenetic Air (KN-1610): и стар и млад

Ещё на прошлогоднем декабрьском мероприятии Keenetic сделала сразу несколько важных анонсов, но нас в рамках данного обзора интересуют только два. Во-первых, компания действительно продолжает поддерживать старые модели, добавляя в прошивку новые функции. Во-вторых, среди этих новых функций в релизе наконец оказалась система Wi-Fi. Вот с ней-то и познакомимся на примере устройств разных поколений: модели 2015 года Keenetic Ultra II и новинки прошлого года Air (KN-1610). Это очередной наглядный пример важности ПО в современных устройствах.

Что такое tx burst в настройках роутера кинетик

Keentic Air (KN-1610)

Что такое Wi-Fi-система по версии Keenetic? Если в двух словах, то это централизованное управление точками доступа (ТД) Wi-Fi на основе любых современных устройств компании, подключённых по Ethernet-кабелю к одному из роутеров Keenetic, который в этом случае становится контроллером системы. Ранее, конечно, тоже можно было просто прокинуть кабель до нужного места, поставить там маршрутизатор, перевести его в режим работы обычной ТД и даже задать одинаковые имена и пароли для подключения к беспроводной сети. Однако Wi-Fi-система предлагает именно единое управление всей сетью. Это касается и обновления прошивок, и переноса всех сетевых настроек, и контроля над пользователями и устройствами, и, конечно, бесшовного роуминга, с которым мы познакомились на примере новой «Ультры».

Что такое tx burst в настройках роутера кинетик

Это своего рода ответ на mesh-системы и в то же время пробный заход на территорию SMB-решений. Причём в обоих случаях компания выигрывает по сочетанию цены и возможностей. С SMB-сегментом в этом смысле всё понятно, потому что стоимость решения для офиса на несколько помещений сама по себе будет немалой даже в случае устройств попроще и подешевле, а для дома такие решения всё равно слегка избыточны. А вот ситуация с mesh-вариантами понятна не всем. Трёхдиапазонные наборы, где один диапазон выделяется исключительно под передачу данных между точками для создания опорной сети, недёшевы. А двухдиапазонные страдают от классической проблемы репитеров — снижения вдвое (или более) базовой скорости из-за полудуплексного характера передачи данных по Wi-Fi. Половину времени точка доступа тратит на общение с другой точкой, а оставшееся распределяет между клиентами, среди которых тоже могут быть точки. И не все варианты поддерживают нормальное перестроение сети в случае отключения одного из узлов. Так что единственный неоспоримый плюс mesh-систем — отсутствие необходимости прокладки кабеля.

Что такое tx burst в настройках роутера кинетик

Для проводных же систем это, наоборот, единственный недостаток. Зато нет потерь в скорости и задержках беспроводного подключения, так как ресурсы эфира не тратятся на опорную сеть, да и масштабируемость значительно выше. В случае решения Keenetic заметного ограничения на число подчинённых точек доступа нет. По топологии тоже — можно подключить точки звездой, подсоединив их к основному роутеру-контроллеру, а можно и цепочкой, одну за другой, или обоими способами сразу. Собственно говоря, никакой хитрой магии (маршрутизации в данном случае) нет — для проводных подключений работает только коммутация. Из-за этого, например, на дочерних точках доступа в составе системы нельзя привязать к физическому порту отдельный сегмент/VLAN, а вот без Wi-Fi-системы в режиме обычной ТД всё будет доступно. Ну и в целом на дочерних точках в системе пропадает возможность изменения большинства настроек, так как они импортируются с контроллера. Это касается сегментов сети, имён и паролей SSID, роуминга, фильтрации MAC, IP и DHCP.

Что такое tx burst в настройках роутера кинетик

Из доступных параметров остаются только регион и стандарт, номер (с автовыбором) и ширина канала, мощность радиомодуля и Band Steering, опции включения Tx Burst и WPS. Тем не менее у дочерних устройств всё равно можно настроить доменное имя в KeenDNS и подключить их к облачной службе Keenetic Cloud, переназначить функции аппаратных кнопок, прописать статические маршруты, выбрать режим работы сетевых портов (скорость/дуплекс) и даже добавить новых пользователей. Хотя как раз приложения, где эти пользователи могут понадобиться, толком доступны не будут, за исключением сервисов для USB-накопителей, которые будут видны всей домашней сети: FTP, SMB, DLNA, а также служб DECT-донгла. Вообще говоря, при таком подходе Keenetic определённо стоит создать отдельную серию простых и недорогих точек доступа на тех же аппаратных платформах, что и роутеры, но без программных излишеств: с чуть другими корпусами/антеннами и питанием посредством PoE, а то и вовсе в виде коробочки для установки прямо в розетку. Выбранный для теста Keenetic Air наиболее близок к такой гипотетической ТД.

Технические характеристики Keenetic Air (KN-1610)
Стандарты IEEE 802.11 a/b/g/n/ac (2,4 ГГц + 5 ГГц)
Чипсет/контроллер MediaTek MT7628N (1 × MIPS24KEc 580 МГц) + MT7612
Память RAM 64 Мбайт/ROM 16 Мбайт
Антенны 4 × внешние 5 dBi; длина 175 мм
Шифрование Wi-Fi WPA/WPA2, WEP, WPS
Параметры Wi-Fi 802.11ac: до 867 Мбит/с; 802.11n: до 300 Мбит/с
Интерфейсы 4 × 10/100 Мбит/с Ethernet
Индикаторы 4 × функ. состояние (на верхней крышке); индикаторов портов нет
Аппаратные кнопки Wi-Fi/WPS/FN, перезагрузка/сброс настроек; режим работы
Размеры (Ш × Д × В) 159 ×110 × 29 мм
Масса 240 г
Питание DC 9 В, 0,85 А
Цена ≈ 3 200 рублей
Возможности
Доступ в Интернет Static IP, DHCP, PPPoE, PPTP, L2TP, SSTP, 802.1x; VLAN; КАБiNET; DHCP Relay; IPv6 (6in4); Multi-WAN; приоритеты подключений (policy-based routing); Ping checker; WISP; мастер настройки NetFriend
Сервисы VLAN; VPN-сервер (IPSec/L2TP, PPTP, OpenVPN, SSTP); автообновление ПО; Captive-портал; NetFlow/SNMP; SSH-доступ; Keenetic Cloud; Wi-Fi-система
Защита Родительский контроль, фильтрация, защита от телеметрии и рекламы: «Яндекс.DNS», SkyDNS, AdGuard; HTTPS-доступ к веб-интерфейсу
Проброс портов Интерфейс/VLAN+порт+протокол+IP; UPnP, DMZ; IPTV/VoIP LAN-Port, VLAN, IGMP/PPPoE Proxy, udpxy
QoS/Шейпинг WMM, InteliQoS; указание приоритета интерфейса/VLAN + DPI; шейпер
Сервисы Dynamic DNS DNS-master (RU-Center), DynDns, NO-IP; KeenDNS
Режим работы Маршрутизатор, WISP-клиент/медиаадаптер, точка доступа, повторитель
Проброс VPN, ALG PPTP, L2TP, IPSec; (T)FTP, H.323, RTSP, SIP
Брандмауэр Фильтрация по порт/протокол/IP; Packet Capture; SPI; защита от DoS

Keenetic Air довольно компактен и мало весит (159 ×110 × 29 мм, 240 г), может крепиться к стене, имеет четыре поворотных антенны и два радиомодуля 2 × 2 для диапазонов 2,4 и 5 ГГц (300 и 867 Мбит/с соответственно), оснащён четырьмя сетевыми портами 100 Мбит/с и поставляется с маленьким блоком питания мощностью 7,65 Вт. Внутри у него SoC MediaTek MT7628N в паре с модулем MT7612, которые обеспечивают поддержку 802.11b/g/n/ac. По производительности он аналогичен прошлому поколению Air. Но самое главное — на корпусе у него есть аппаратный переключатель режимов работы. Поэтому, в отличие от других устройств, для перевода Air в режим точки доступа, который и нужен для работы в составе Wi-Fi-системы Keenetic, не надо лезть в веб-интерфейс, менять настройки и ждать перезагрузки — достаточно перед подключением питания просто сдвинуть рычажок переключателя в нужное положение и присоединить ethernet-кабель от контроллера системы. Особых требований к модели Keenetic, выбранной на роль контроллера, в общем-то, нет. Понятно, что если у вас уже есть несколько роутеров компании, то лучше, пожалуй, выбрать основным тот, который побыстрее хотя бы в части ethernet-портов, но это необязательно.

Что такое tx burst в настройках роутера кинетик

Что такое tx burst в настройках роутера кинетик

На роутере, который станет впоследствии контроллером Wi-Fi-системы, в настройках надо доустановить одноимённый компонент — в меню слева появится новый пункт. После включения системы Wi-Fi новоявленный контроллер просканирует сеть и предложит «захватить» подходящие точки доступа. Для работы системы требуется прошивка NDMS версии 2.15 или старше, но фактически при захвате точки доступа она всё равно будет обновлена до последней версии. В частности, у тестового Keenetic Air была довольно старая прошивка, что не помешало захватить его, обновить и включить в состав системы Wi-Fi. И… на этом процесс её настройки был завершён! Всё, что касается логики работы проводной и беспроводной сети, теперь настраивается только на контроллере и затем распространяется на все подчинённые точки доступа.

Что такое tx burst в настройках роутера кинетик

Что такое tx burst в настройках роутера кинетик

На соседней вкладке можно просмотреть журнал подключений/отключений и переходов устройств между всеми точками доступа. Переходы касаются и перемещений клиентов от одной точки доступа к другой, и переключений между диапазонами в пределах одной ТД, если активирован Band Steering. В логе можно увидеть три варианта переключений: 1) простой переход, когда клиент отключается от одной точки и заново подключается к другой — это самый медленный способ; 2) переход по PMK-кешу, когда при переподключении часть шагов отбрасывается и клиент быстрее цепляется к новой ТД; 3) быстрый переход, или Fast Transition (FT mode), который и даёт роуминг почти без потерь. Реальная же эффективность, а то и вообще наличие роуминга Wi-Fi, зависит в первую очередь от клиентов — при соблюдении всех условий всё равно именно они принимают решение о переходе и его типе, причём не всегда оптимальное.

Что такое tx burst в настройках роутера кинетик

Что такое tx burst в настройках роутера кинетик

Наиболее полную информацию о возможностях своих аппаратов в отношении поддержки стандартов, как и прежде, предоставляют Apple и Samsung — по ссылкам коротко рассказано, что такое 802.11 k/v/r и зачем нужны эти стандарты. В веб-интерфейсе Keenetic можно просмотреть текущие параметры подключения к Wi-Fi и наличие поддержки k/v/r для каждого из клиентов. Так что iPhone X, который умеет работать со всеми этими стандартами, снова был выбран в качестве тестового аппарата для проверки работы роуминга в реальной домашней сети с пачкой активных клиентов. На видео ниже хорошо видны две вещи. Во-первых, записи в логе о быстром переходе между двумя точками доступа — контроллером в лице Ultra II и подчинённым Keenetic Air. Во-вторых, снижение скорости при переходе к Air, связанное с ограничением пропускной способности проводной сети. Проводные порты у Air на 100 Мбит/с, но в данном конкретном случае для иллюстрации использовался один поток в полудуплексе, хотя мы знаем, что это не предел для данной платформы. В любом случае это самый частый и практически идеальный вариант перехода с минимальными потерей пакетов и числом ретрансмиссий. Но даже iPhone X иногда делает «медленный» переход с полным переподключением.

Быстрый роуминг Wi-Fi на iPhone X в составе Wi-Fi-системы

Что такое tx burst в настройках роутера кинетик

Для большинства других современных устройств, скорее всего, будет характерна поддержка только 802.11 k и/или v, а старые, вероятно, не поддерживают ничего из этого. Впрочем, как уже упоминалось в обзоре новой Keenetic Ultra, в реальности FT mode актуален для крайне малого числа приложений, и обычного перехода или уж тем более перехода с помощью PMK-кеша более чем достаточно. К тому же разработчики обещали в следующих релизах улучшить эффективность работы и этого метода тоже. Хотя каким-нибудь устройствам умного дома, например, это и вовсе ненужно. Их можно просто вывести в отдельный изолированный сегмент и — если расширение покрытия нужно, по большому счёту, только для них — докупить для Wi-Fi-системы совсем простые модели Start или Lite. А для типичных домашне-офисных нужд как раз подойдут новые Air, City или Extra.

Заключение

Единственным серьёзным ограничением Wi-Fi-системы в исполнении Keenetic является необходимость прокладки кабеля до подчинённых точек доступа — напрямую или через другие такие же точки. Но именно это выгодно отличает её по скорости передачи данных от mesh-решений, где опорной сетью является тот же Wi-Fi, в лучшем случае с дополнительным 5-ГГц диапазоном, который клиенты использовать всё равно не могут. От кабельных систем других вендоров Keenetic отличается простотой установки и настройки, которую осилит даже обычный пользователь. При этом решение Keenetic, что конкретно для SOHO-систем всё ещё редкость, поддерживает 802.11 k/v/r для организации роуминга вместо традиционного грубого отключения клиента от ТД при ослаблении сигнала и оставления его на волю судьбы. Естественно, для полного счастья нужна поддержка этих технологий и со стороны клиентов.

Что такое tx burst в настройках роутера кинетик

А вообще всё это, по-хорошему, заслуга исключительно программистов и общей политики компании. Как и в нашем сценарии, владельцы старых устройств получают поддержку новых функций, а при необходимости увеличения покрытия могут докупить роутеры посовременнее. Недельная работа связки Ultra II и обновлённого Air оказалась настолько незаметной, что лишь укрепила веру в необходимость создания отдельной серии точек доступа для работы в составе Wi-Fi-системы — желательно в компактном корпусе и с PoE-питанием. Что же, посмотрим. Пока компания занята выходом на зарубежные рынки, а следующее большое обновление моделей запланировано на вторую половину года.

Мощность Передатчика Сигнала WiFi Роутера — Как Уменьшить или Увеличить TX Power?

Увеличить или уменьшить мощность wifi роутера, а точнее сигнала передатчика (TX Power), часто бывает необходимо при настройке беспроводной сети. Например, для того, чтобы сигнал не ловил в коридоре или в соседней квартире. Чтобы не провоцировать потенциальных злоумышленников на попытки взлома вашего вайфая. Но обычно пользователи спрашивают, как сделать беспроводной сигнал сильнее и тем самым расширить зону приема от ротуеров TP-Link, Asus, Zyxel Keenetic, D-Link, Tenda, Upvel.

Что такое TX Power?

TX Power — это мощность сигнала роутера, а точнее его передатчика wifi.

Хотя этот термин в интерфейсе администраторской части может и не встречаться. Но он всегда измеряется в таких единицах, как «dBm». То есть «децибел на метр». Например, в технических характеристиках передатчика пишут — 20 dBm, 30 dBm и так далее. В разных странах даже есть законы, ограничивающие это максимальное значение.

Также иногда в интерфейсе маршрутизатора можно встретить такое понятие, как «TX Burst», то есть увеличение мощности передатчика wifi.

Что такое мощность wifi сигнала в реальности?

Но это все только теория. А у нас, практиков, возникает резонный вопрос — 20 dbm, это сколько метров? Ответить на него однозначно невозможно. Ведь зона приема очень сильно зависит не только от самого передатчика сигнала, но и от множества других факторов. Например, препятствия или перегородок, находящихся на пути от источника к приемнику. Или от окружающих электромагнитных волн, которые могут наводить помехи.

В настройках марштуризатора мы же можем принудительно уменьшить или усилить TX Power. Свойство снижать мощность сигнала сильно пригодится тем, кто считает, что wifi — это вредно для здоровья. И хотя на многих маршрутизаторах существует возможность отключать его по расписанию, возможность сделать беспроводной сигнал на одно-два деления меньше тоже не помешает, тем более, если у вас квартира небольшая.

Как пользоваться TX Power на роутере TP-Link — регулировка мощности сигнала wifi

На роутере TP-Link регулировка мощности wifi сигнала ограничена тремя предустановленными настройками TX Power:

Находятся они в разделе «Дополнительные настройки — Беспроводной режим»

мощность сигнала wifi tp-link

Управление мощностью сигнала TX Power на роутере Asus

На маршрутизаторе Asus настройки выходной мощности находятся в разделе «Беспроводная сеть», во вкладке «Профессионально», но имеется не во всех моделях. Здесь если прокрутить страницу в самый низ, то увидите последний пункт «Управление мощностью сигнала TX Power». В некоторых роутера Asus мощность wifi нужно прописать самостоятельно в цифрах в видео единиц измерения mW — максимально 200mW.

мощность wifi asus

В других это сделано более наглядно в виде ползунка в процентах от максимальной мощности сигнала

мощность сигнала wifi asus

Настройка мощности сигнала wifi на роутере Zyxel Keenetic

Для того, чтобы увеличить или уменьшить мощность wifi на роутере Zyxel Keenetic, нужно пройти в меню «Сеть Wi-Fi» и среди всех прочих настроек найти строку «Мощность сигнала». Здесь из выпадающего списка выбираем необходимое значение в %.

мощность сигнала на роутере zyxel keenetic

Если вы являетесь владельцем более современного маршрутизатора Keenetic, то для регулировки TX Power открываем меню «Домашняя сеть» и далее кликаем на ссылку «Дополнительные настройки».

свои?ства сети keenetic

Здесь есть сразу две возможности ослабить или усилить сигнал. Во-первых, выбрать уровень его мощности в процентах. Во-вторых, поставить флажок на «TX Burst» для увеличения пиковой скорости передачи данных

TX мощность (TX power) в Wi-Fi роутере: разбираемся в настройках

Доброго времени суток всем! Сегодня мы поговорим про TX мощность или Power. Сначала давайте ответим на вопрос – что же это такое. Если говорить простым языком, то это мощность беспроводного сигнала. Чаще всего используется две метрики dBm и mW. По сути, если увеличить данный показатель, то можно увеличить зону покрытия Wi-Fi сигнала.

Многие сразу же начнут думать, что таким образом можно улучшить сигнал. На самом деле этот вопрос только усложняется при увеличении мощности передатчика. Обычно большие мощности используют для передачи радиоволн не большое расстояние. Но что будет если увеличить мощность в пределах маленькой квартиры.

Радиоволны, как и любая другая волна может отражаться от препятствий. То есть она будет отражаться от бетонных стен. Особенно хорошо отражается волны от металла и зеркал. В результате в квартире радиочастоты будут засорены собственным вай-фаем. Это может привести к потери сигнала, помехам, ухудшению связи и скорости.

Прибавим сюда лишние радиоволны от других устройств. Также может сильно ухудшиться мобильная связь – и в трубке вы будете слышать вместо слов собеседника шиканье и тишину. А теперь представим, что у ваших соседей будет стоять более мощные роутеры, тогда они будут бить через несколько стен и мешать как себе, так и другим. В итоге интернет через WiFi будет плохой у всех.

Как увеличить или уменьшить

Если у вас небольшая квартира, то лучше сигнал уменьшить, чтобы не мешать соседям и самому себе. То есть если даже в самой дальней комнате сигнал спокойно доходит до устройства. Также его можно увеличить, если вы живете в большом доме. Для начала вам нужно уже быть подключенным к сети маршрутизатора. Далее нужно с подключенного устройства зайти и вписать адрес роутера в адресную строку браузера. Стандартный адрес находится на этикетке под аппаратом.

TX мощность (TX power) в Wi-Fi роутере: разбираемся в настройках

После этого вам нужно будет ввести логин и пароль от администраторской панели. Далее инструкции будут отличаться в зависимости от модели и фирмы интернета-центра.

«Беспроводная сеть» – «Профессионально».

TX мощность (TX power) в Wi-Fi роутере: разбираемся в настройках

Теперь пролистываем в самый низ. После того как поставите значение не забудьте нажать на кнопку «Применить».

TX мощность (TX power) в Wi-Fi роутере: разбираемся в настройках

Zyxel Keenetic

В новой прошивке сразу же перейдите в соответствующее меню беспроводной сети. Мощность написана в процентах. Градация мощности такая:

  • 10% – 11 дБм
  • 25% – 14 дБм
  • 50% – 17 дБм
  • 75% – 19 дБм
  • 100% – 20 дБм

TX мощность (TX power) в Wi-Fi роутере: разбираемся в настройках

На старой прошивке нажимаем по «лесенке», далее выбираем мощность и нажимаем «Применить».

TX мощность (TX power) в Wi-Fi роутере: разбираемся в настройках

Transmit Power D-Link

TX мощность (TX power) в Wi-Fi роутере: разбираемся в настройках

На новой прошивке, нужно внизу выбрать «Расширенные настройки». Далее в разделе «Wi-Fi» с помощью стрелочки найдите пункт «Дополнительные настройки». Устанавливаем значение и сохраняем параметры.

TX мощность (TX power) в Wi-Fi роутере: разбираемся в настройках

«Wi-Fi» – «Доп. настройки». Все по аналогии с новой прошивкой.

TX мощность (TX power) в Wi-Fi роутере: разбираемся в настройках

TP-Link

«Беспроводной режим» – «Доп. настройки». Теперь устанавливаем значение в верхнем пункте и сохраняемся.

TX мощность (TX power) в Wi-Fi роутере: разбираемся в настройках

Если у вас другая прошивка, то просто действуйте согласно стрелочкам на картинке ниже.

TX мощность (TX power) в Wi-Fi роутере: разбираемся в настройках

Mikrotik уменьшить или увеличить мощность WiFi

Делается это в «Intarface » в седьмой вкладке Микротик. Самыми оптимальными вариантами будет от 18 до 21 dBm. 27 ставить не рекомендую, так как будет повышенный фон, а связь будет только хуже.

Методы увеличения производительности в беспроводных сетях Wi-Fi, часть первая: Bursting, Compression, Fast Frames, Concatenation

Практически во всех выпускаемых ныне беспроводных адаптерах стандарта 802.11g можно встретить суффиксы «super G», «turbo», «plus» и т.д. Причем суффиксами дело обычно не ограничиваются. Производители (точнее их маркетологи) красочно рисуют на коробках цифры 108, а некоторые — аж 125 Мбит/сек.

125 — звучит заманчиво. Неужели беспроводные адаптеры работают быстрее старого доброго Fast Ethernet по проводам? Может ну их… в баню, эти «древние» Fast Ethernet адаптеры? Выкидываем надоевшие кабели и да здравствует радиоезернет? ��

Но, как говорится, семь раз отмерь, один — отрежь. Что в нашем случае означает, что не мешало бы поподробнее узнать, что же это за такие загадочные технологии, как они работают и какие на самом деле скорости обеспечивают (и самое главное — при каких условиях). Другими словами, не забываем анекдот про физиков и из сферических коней в вакууме. А так же делаем скидку маркетологам на то, что для них важнее всего — продать решения своей компании.

Различных вариантов «разгона» стандартного 802.11g существует довольно много. Точнее — у каждого производителя чипов оно свое (по крайней мере — называется по-разному). К сожалению, не все производители объясняют, что именно представляют из себя их технологии. Информацию по технологиям мне удалось найти лишь у компании Atheros и Texas Instruments. Но наиболее информативный ресурс оказался у Atheros — у них даже есть отдельный сайт, посвященный их технологиям Super G и Super AG.

Собственно, бОльшая часть статьи — это компиляция информации с сайтов Atheros и Texas Instruments и по мелочи — из других источников.

Переходим непосредственно к технологиям.

Для начала посмотрим на «чистый» 802.11g. Максимальная пропускная способность в этом режиме — 54 Мбит/сек. Думаю, большинство читателей знает, как перевести мегабиты в мегабайты? Правильно — делим мегабиты на восемь и получаем скорость 6.75 Мбайт/сек.

Но внимательные читатели (кто смотрит в статьях не только предисловие и выводы, а иногда пробегается, хотя бы одним глазом, по диаграммам замера скоростей) знают, что в обычном 802.11g режиме скоростей более

25 Мбит мы не получали. Так это же только половина от 54 Мбит! Куда делась вторая половина? Куда — это тема отдельной статьи, отмечу лишь, что на пользовательские данные действительно приходится примерно половина (в лучшем случае) пропускной способности канала.

Это первая плохая новость. Есть и вторая. Радиоволны (собственно, с помощью них и передается информация в беспроводных сетях) передаются во все стороны от источника сигнала (рассматриваем общий случай). Т.е. передающего слышат все. Эти «все» могут принимать данные или не принимать, это не важно. Главное — они не могут в этот момент что-либо передавать на той же частоте. Точнее говоря, попытаться то они могут, но сигналы обоих источников наложатся друг на друга, в результате чего информационная составляющая будет искажена и потеряна. Другими словами, в беспроводных сетях одновременно может передавать только один источник из нескольких, работающих на одной и той же частоте. Т.е. принцип рации — сначала говорим, потом молчим и слушаем.

Таким образом, щедро выделенные нам

25 Мбит делятся на всех участников беспроводной сети. Если количество клиентов составляет 5 хостов, то в момент интенсивной передачи данных с каждого, на одного придется канал пропускной способностью примерно 5 Мбит (а на самом деле даже чуть меньше).

Есть и третья плохая новость. Вторая «плохая новость» насчет «5 Мбит на 5 хостов» верна лишь в случае Ad Hoc сети, т.е. без точки доступа. Если брать более общий случай с точкой доступа, то эти жалкие 5 мбит придется поделить еще на два. Ведь в Infrastructure режиме беспроводной сети (с участием точки доступа) любой обмен с клиентами проходит через точку доступа. А она сначала должна принять данные, а потом ретранслировать их к получателю. В результате получаем по 2 с хвостиком мегабита на брата.

Теперь вернемся к цифрам 108 и 125, которые так любят крупным шрифтом рисовать на коробках производители. Ну, вы уже все поняли, да? ��

Смело делим на два (про сферического коня чуть позже). Получаем максимум 60мбит в случае одного клиента и соответственно в n-цать раз меньше, в случае N клиентов.

Для тех, кому надо было лишь выяснить, пора ли выкидывать провода или «еще погодить», дальнейшую часть статьи можно не читать. Ответ — выкидывать пока рано. Как минимум, надо дождаться WiMAX.

Теперь перейдем к более детальному рассмотрению рассмотрению технологий увеличения пропускной способности беспроводных сетей по сравнению со стандартным 802.11g режимом.

Полагаю, у всех производителей все их плюсы, турбо и т.д. представляют собой то же самое, что и у Atheros с TI, но с другим названием. Но детали реализаций могут различаться, поэтому не факт, что технологии различных производителей совместимы друг с другом.

Технология Atheros для 802.11g носит название Super G (есть еще одна — Super AG, это тоже самое, но для стандарта 802.11a, т.е. для сетей на 5 ГГц). Atheros Super G позволяет увеличить пропускную способность до 108 Мбит/сек. И, как честно заявляет Atheros, для пользователя скорость может достигать 60 Мбит.

Увеличение производительности достигается несколькими способами:

Atheros Super G / Super AG технологии:
  • посылка большего количества кадров за тот же временной интервал
  • увеличение пропускной способности за счет удаления части накладных расходов
  • компрессия данных в реальном времени
  • Lempel Ziv компрессия
  • увеличение пропускной способности за счет предварительного сжатия информации
  • центральный процессор компьютера не задействуется
  • агрегация (объединение) кадров (размер кадров до 3000 байт) и манипуляции с временными интервалами
  • увеличение пропускной способности за счет передачи большего количества данных в одном кадре и удаления межкадровых временнЫх пауз
  • технология, аналогичная транкингу в ethernet-сетях, т.е. задействование одновременно двух каналов для передачи
  • постоянный мониторинг окружения и подстройка скорости под текущие нужды
  • максимальное увеличение пропускной способности за счет использования нескольких (двух) каналов передачи одновременно

У себя на сайте Atheros приводит красочную диаграмму, показывающую влияния различных технологий на скорость передачи данных:

рис.1, влияние различных технологий на производительность беспроводной связи

В базовом режиме 802.11g или 802.11a, в котором все расширенные технологии отключены, можно получить скорость до 22 Мбит (чистых, т.е. доступных пользователю). Добавляя технологии, которые возможно будут в будущем стандарте 802.11e (Bursting, Fast Frames, Compression), можно увеличить скорость до 40 Мбит включительно. Активируя Dynamic Turbo режим, т.е. задействуя два канала под передачу данных, можно довести скорость до теоретического максимума в 60 Мбит.

Разумеется, приведенные цифры — это лишь максимально возможная скорость в данном режиме работы (тот самый сферический конь в вакууме). В реальности все будет зависеть от таких условий, как удаленность клиента от точки доступа, количество одновременно работающих клиентов, радиообстановка в месте, где расположена беспроводная сеть и так далее.

У Texas Instruments технологии повышения производительности носят название G-Plus. Часть из них похожа на технологии Atheros, часть — присуще только TI.

Texas Instruments G-Plus технологии:
  • объединение данных из нескольких пакетов — в один (размер пакета — до 4000 байт)
  • увеличение пропускной способности за счет удаления служебной информации заголовков «лишних» кадров и удаления времени межкадрового ожидания
  • аналогично технологии от Atheros
  • аналогично технологии от Atheros

Подробно остановимся на каждой из перечисленных технологий — bursting, compression, fast frames, dynamic turbo. Примечательно то, что все четыре технологии работают независимо друг от друга, тем самым добиваясь максимально возможной производительности одновременно несколькими способами.

1. Bursting.

Frame Bursting — технология, заложенная в предварительный вариант стандарта 802.11e QoS. Frame Bursting позволяет увеличивать пропускную способность линка при обмене (точка-точка) между 802.11a, b или g устройствами за счет уменьшения накладных расходов, возникающих при передаче данных в беспроводных сетях. Причем хорошие результаты достигаются как в гомогенных (однородных), так и в смешанных беспроводных сетях.

На рисунке 2 приведен пример стандартной передачи (without bursting).

рис.2, стандартный режим 802.11a/b/g

В режиме стандартной передачи данных мы наблюдаем процесс передачи двух кадров (frame1 и frame2) во времени от источника Source к получателю Destination. Процесс передачи данных поделен на временные интервалы (по оси X — ось времени). Так как в любой момент времени передавать может лишь один источник, то каждая станция слушает эфир в течении времени DIFS (Distributed InterFrame Space), если она не услышала передачи другой станции, значит эфир свободен, можно передавать кадр. После передачи кадра (frame1), станция-передатчик ждет подтверждения об успешном приеме от получателя. Получатель обязан отослать подтверждение (ack), которое он отсылает практически сразу, после ожидания короткого промежутка времени SIFS — Short InterFrame Space (если подтверждения не было, то получатель считает, что кадр не был принят и должен перепослать его заново). После получения подтверждения передатчик опять обязан выждать интервал времени DIFS и только потом (если эфир по-прежнему свободен) начать отсылку второго кадра frame2. И так далее.

Таким образом, кадры ожидания DIFS отнимают достаточно существенную часть пропускной способности беспроводной сети.

Теперь посмотрим на картину передачи при использовании технологии Frame Bursting:

рис.3, задействование Frame Bursting

В этом режиме (рисунок 3), источник и получатель монопольно [по очереди] занимают канал под свою передачу. После передачи кадра frame1 и получения подтверждения об успешном приеме оного, передатчик не ждет положенный интервал времени DIFS. Передатчик выжидает лишь короткий временной интервал SIFS, после чего передает второй кадр данных и так далее. Тем самым, передатчик не дает возможности начать передачу другим станциям — им приходится ожидать окончания общего периода такой burst-передачи.

Разумеется, общий интервал передачи данных в таком режиме ограничен (а то передача нескольких гигабайтов данных полностью бы парализовала работу остальных клиентов той же беспроводной сети). Но удаление интервала DIFS позволяет за тот же период времени передать существенно бОльшее количество данных, тем самым экономя пропускную способность канала, т.е. увеличивая общую скорость передачи данных.

Atheros заявляет, что все ее продукты данную технологию поддерживают. Но очевидно, что устройства других производителей, в которых эта технология не встроена, могут и не понять такой «разрывной» режим работы. Поэтому, если подтверждение на посланный в начале burst-режима пакет не получено получателем, передатчик отключает bursting и переходит в базовый режим работы.

Реализация Bursting у TI аналогична технологии Atheros. TI приводит следующую картинку, иллюстрирующую работу их технологии (рис 4):

рис.4, Frame Bursting от Texas Instuments

TI тоже удаляют «длинный» временной фрейм ожидания, тем самым сокращая накладные расходу на передачу.

Информация о совместимости burst-технологий в реализациях от TI и Atheros на сайтах обеих компний отсутствует.

Подобная «bursing» технология, вероятно, присутствует и у других производителей. Но Atheros пошла дальше и расширила ее до «dynamic bursting». По ее заверениям, эта технология особенно эффектна в сетях с количеством работающих беспроводных клиентов больше единицы.

К примеру, в беспроводной сети две станции, одна расположена близко к точке доступа, другая удалена от нее. Разумеется, дальний клиент работает с точкой доступа на более низкой скорости (из-за расстояния). Поэтому для передачи данных определенного размера (для ближайшего клиента) ему потребуется больше времени, чем ближайшему — для приема этих данных. В этом случае активация bursting для дальней станции позволит ей сократить время передачи порции данных и, как ни странно, это же позволит ближайшей станции еще быстрее эти данные принять (так как она меньше будет ожидать на линии освобождения эфира). Интервалы, на которые клиенты могут занять эфир «burst»-передачей, также зависят от удаленности (точнее, скорости работы) клиентов. Ближайший клиент получит грант на более длинную burst-передачу, так как за единицу времени он передает больше данных (и быстрее освободит эфир).

Atheros Compression technology.

Вторая технология от Atheros, расширяющая стандарт 802.11 — аппаратная компрессия данных. Она встроена во все 802.11a,b,g чипсеты компании. Используемый алгоритм — Lempel Ziv. Этот же алгоритм используется в архиваторах gzip, pkzip, winzip. Данные «на лету» упаковываются перед пересылкой и распаковываются на принимающей стороне.

К сожалению, данные предварительно не анализируются, а сжимаются все кадры подряд. Тем самым, выигрыш достигается не всегда — например, пересылка уже упакованного файла может увеличить размер передаваемых по беспроводной сети данных.

С другой стороны, хорошо подверженные компрессии данные будут переданы кадрами меньшего размера, тем самым передатчик займет меньше эфирного времени на свою передачу. Это время может быть использовано для работы других беспроводных клиентов.

Atheros Fast Frames.

Технология Fast Frames предлагает слияние двух кадров в один, большего размера. Тем самым, мы избавляемся от служебной информации (в заголовке второго пакета — остается лишь один заголовок нового кадра) и временных пауз ожидания между кадрами:


рис.5, обычная передача данных

рис.6, Fast Frames активна

Причем размер полученного кадра-фрейма может достигать 3000 байт, что в два раза больше максимального размера кадра стандартного ethernet-пакета. Таким образом, даже если идет поток данных из проводной сети с пакетами максимального (1500 байт) размера, технология Fast Frames все равно будет работать, объединяя каждые два ethernet-пакета в один бОльшего размера. Как только FastFrames-алгоритм будет согласован между точкой доступа и станцией, все дальнейшие пересылки данных между этими двумя устройствами будут происходить с использованием таких, увеличенных вплоть до 3000 байт, кадров.

С учетом того, что Fast Frames может работать совместно с Frame Bursting, мы получаем очень неплохие результаты по скорости передачи. Кстати говоря, как заявляет Atheros, большинство производителей, реализовавших в своих чипах технологию Frame Bursting, тем не менее, не поддерживают Fast Frames. У Atheros тут все впорядке — их продукты держат и то и другое.

Технология Fast Frames — тоже часть черновой версии стандарта 802.11e. Тем не менее, ее совместимость с продуктами других производителей не гарантируется. С другой стороны, технология работает в рамках стандартных временных интервалов (в отличии от Frame Bursting, которая монопольно занимает полосу на некоторое время). Именно поэтому Fast Frames лучше вписывается в беспроводные сети, где используется оборудования различных производителей.

Texas Instruments Frame Concatenation

Технология Frame Concatenation, реализованная в продуктах компании Texas Instruments, использует те же принципы, что и Fast Frames у Atheros.

Но TI пошли дальше. У них объединению подвергаются два и более кадров (рисунок 7):

рис.7, технология Frame Concatenation

Тем самым, они выигрывают на удалении служебной информации и межкадровых интервалов ожидания от одного и более кадров. TI заявляет, что их технология Frame Concatenation будет работать с любыми 802.11b/b+/g продуктами от TI и (!)других производителей. Не совсем ясно, что они имели ввиду под другими производителями, если у последних поддержка этой технологии не будет реализована… Возможо имелась ввиду работа с кадрами, размер которых не превышал стандартного (1500 байт) размера.

В технологию Frame Concatenation заложен алгоритм, позволяющий упаковывать в мега-кадры не все пакеты подряд. Например, если в очереди отправки на заданное направление находится лишь один кадр, то он будет отослан незамедлительно. Другими словами, сливаться будут лишь те кадры, у которых одинаковый адрес получателя (destination address, в данном случае имеется ввиду MAC адрес получателя). Причем, алгоритм действует только на unicast-пакеты — широковещательные (multicast), а так же служебные пакеты отсылаются без изменений.

На данный момент, максимальный размер Concatenation-пакета может достигать 4096 байт (что косвенно говорит о том, что эта технология не совместима с подобной же технологией от Atheros).

Заключение.

Как видно, производители не дожидаются официального объявления стандартов (в данном случае 802.11e), а интегрируют новые технологии в свои продукты. В результате, с одной стороны, достигаются неплохие результаты в виде увеличения скорости, с другой — технологии различных производителей часто оказываются несовместимы друг с другом.

Не рассмотренной осталась технология агрегирования каналов у Atheros (Dynamic Turbo). Про нее — во второй части статьи.

А если к тому времени найдутся документы, описывающие реализации super/plus/etc технологий у других производителей беспроводных решений (или мне подскажут ссылки них в форуме (ссылка чуть ниже)), то обзор этих технологий также будет добавлен во вторую часть статьи.

1. Подключите Ethernet-кабель, входящий в Вашу квартиру, в порт 0 (голубого цвета) роутера.

2. Соедините Ethernet-кабелем сетевую карту компьютера и один из портов роутера, например порт №1, как показано на рисунке.

Быстрая настройка через Мастер первоначальной настройки.

1. Запустите Интернет-браузер. Если страница быстрой настройки роутера автоматически не запустилась, то в адресной строке введите http://192.168.1.1 и нажмите Enter . На странице быстрой настройки нажмите кнопку Начать быструю настройку.

3. Установка пароля на администратора интернет-центра.

4. В открывшемся окне выберите пункт Ethernet и нажмите кнопку Продолжить.

5. Если у Вас имеется телевизионная STB-приставка, то в следующем окне поставьте галочку и на пункте IP-телевидение. Далее нажмите Продолжить.

6. В новом окне выберите Подключаться без VLAN и нажмите Продолжить.

7. Далее выберите пункт По умолчанию. Нажмите Продолжить.

8. В ниспадающем меню Настройка IP выберите пункт Автоматическая и Продолжить.

9. Далее: Без пароля (IPoE) и нажмите кнопку Продолжить.

10. Настройка подключения к Интернету завершена. Нажмите Продолжить.

12. В поле Имя сети введите желаемое название Вашей сети Wi-Fi, в поле Ключ сети введите пароль (не менее 8 символов). Нажмите кнопку Сохранить.

13. Нажмите на кнопку Завершить настройку. Настройка роутера завершена.

Настройка через панель роутера

1. Запустите Интернет-браузер. Если страница быстрой настройки роутера автоматически не запустилась, то в адресной строке введите http://192.168.1.1 и нажмите Enter .
На странице быстрой настройки нажмите кнопку для перехода в панель управления.

3. Нажмите кнопку Домашняя сеть.

4. В разделе Беспроводная сеть WI-FI (2,4 ГГЦ) нажмите кнопку Дополнительные настройки.

5. В дополнтельных настройках выполните следующие пункты:
Имя сети (SSID) и Пароль – произвольно, можно, как в регистрационной карточке.
В пункте Защита сети выберите параметр WPA2-PSK+WPA3-PSK. Страна Russian Federation.
Пункт Канал при начальной настройке оставьте с параметром Авто. Установите галочку Tx Burst.

Примечание. Если некоторые устройства не подключаются к Wi-Fi сети, нужно изменить Защиту сети на WPA2-PSK.

Далее нажмите Сохранить.

6. В разделе Беспроводная сеть WI-FI (5 ГГЦ) нажмите кнопку Дополнительные настройки .

В дополнтельных настройках выполните следующие пункты:
Имя сети (SSID) рекомендуем изменить добавив обозначение 5G. Пароль – произвольно, можно, как в регистрационной карточке. В пункте Защита сети выберите параметр WPA2-PSK+WPA3-PSK . Страна Russian Federation . Пункт Канал при начальной настройке оставьте с параметром Авто. Установите галочку Tx Burst .

Tx burst zyxel что это

Burst.com — (pinksheets|BRST) is a company that specializes in revenue generation via patent defense in the area of software for video and audio delivery over the Internet.While it has moved from Arizona to San Francisco and various other locations over its… … Wikipedia

Burst (Flandern) — Burst … Deutsch Wikipedia

Burst Angel — Saltar a navegación, búsqueda Burst Angel 爆裂天使 (Bakuretsu Tenshi) Género Acción, Comedia, Mecha, Yuri Anime … Wikipedia Español

Burst — may refer to: *Burst mode, a mode of operation where events occur in rapid succession **Burst transmission, a term in telecommunications **Burst switching, a feature of some packet switched networks **Bursting, a signaling mode of neurons*Burst… … Wikipedia

Burst — Saltar a navegación, búsqueda Burst Información personal Origen Kristinehamn Suecia … Wikipedia Español

Burst! — is a client for the BitTorrent protocol.Burst! uses a modified version of the original python client as the back end, and replaces the front end with a native Win32 application, which has a smaller memory footprint, due to replacing the wxPython… … Wikipedia

Burst — Burst … Wikipédia en Français

Burst — (b[^u]rst), v. t. 1. To break or rend by violence, as by an overcharge or by strain or pressure, esp. from within; to force open suddenly; as, to burst a cannon; to burst a blood vessel; to burst open the doors. [1913 Webster] My breast I ll… … The Collaborative International Dictionary of English

Burst — Burst, n. 1. A sudden breaking forth; a violent rending; an explosion; as, a burst of thunder; a burst of applause; a burst of passion; a burst of inspiration. [1913 Webster] Bursts of fox hunting melody. W. Irving. [1913 Webster] 2. Any brief,… … The Collaborative International Dictionary of English

Ещё на прошлогоднем декабрьском мероприятии Keenetic сделала сразу несколько важных анонсов, но нас в рамках данного обзора интересуют только два. Во-первых, компания действительно продолжает поддерживать старые модели, добавляя в прошивку новые функции. Во-вторых, среди этих новых функций в релизе наконец оказалась система Wi-Fi. Вот с ней-то и познакомимся на примере устройств разных поколений: модели 2015 года Keenetic Ultra II и новинки прошлого года Air (KN-1610). Это очередной наглядный пример важности ПО в современных устройствах.

Keentic Air (KN-1610)

Что такое Wi-Fi-система по версии Keenetic? Если в двух словах, то это централизованное управление точками доступа (ТД) Wi-Fi на основе любых современных устройств компании, подключённых по Ethernet-кабелю к одному из роутеров Keenetic, который в этом случае становится контроллером системы. Ранее, конечно, тоже можно было просто прокинуть кабель до нужного места, поставить там маршрутизатор, перевести его в режим работы обычной ТД и даже задать одинаковые имена и пароли для подключения к беспроводной сети. Однако Wi-Fi-система предлагает именно единое управление всей сетью. Это касается и обновления прошивок, и переноса всех сетевых настроек, и контроля над пользователями и устройствами, и, конечно, бесшовного роуминга, с которым мы познакомились на примере новой «Ультры».

Это своего рода ответ на mesh-системы и в то же время пробный заход на территорию SMB-решений. Причём в обоих случаях компания выигрывает по сочетанию цены и возможностей. С SMB-сегментом в этом смысле всё понятно, потому что стоимость решения для офиса на несколько помещений сама по себе будет немалой даже в случае устройств попроще и подешевле, а для дома такие решения всё равно слегка избыточны. А вот ситуация с mesh-вариантами понятна не всем. Трёхдиапазонные наборы, где один диапазон выделяется исключительно под передачу данных между точками для создания опорной сети, недёшевы. А двухдиапазонные страдают от классической проблемы репитеров — снижения вдвое (или более) базовой скорости из-за полудуплексного характера передачи данных по Wi-Fi. Половину времени точка доступа тратит на общение с другой точкой, а оставшееся распределяет между клиентами, среди которых тоже могут быть точки. И не все варианты поддерживают нормальное перестроение сети в случае отключения одного из узлов. Так что единственный неоспоримый плюс mesh-систем — отсутствие необходимости прокладки кабеля.

Для проводных же систем это, наоборот, единственный недостаток. Зато нет потерь в скорости и задержках беспроводного подключения, так как ресурсы эфира не тратятся на опорную сеть, да и масштабируемость значительно выше. В случае решения Keenetic заметного ограничения на число подчинённых точек доступа нет. По топологии тоже — можно подключить точки звездой, подсоединив их к основному роутеру-контроллеру, а можно и цепочкой, одну за другой, или обоими способами сразу. Собственно говоря, никакой хитрой магии (маршрутизации в данном случае) нет — для проводных подключений работает только коммутация. Из-за этого, например, на дочерних точках доступа в составе системы нельзя привязать к физическому порту отдельный сегмент/VLAN, а вот без Wi-Fi-системы в режиме обычной ТД всё будет доступно. Ну и в целом на дочерних точках в системе пропадает возможность изменения большинства настроек, так как они импортируются с контроллера. Это касается сегментов сети, имён и паролей SSID, роуминга, фильтрации MAC, IP и DHCP.

Из доступных параметров остаются только регион и стандарт, номер (с автовыбором) и ширина канала, мощность радиомодуля и Band Steering, опции включения Tx Burst и WPS. Тем не менее у дочерних устройств всё равно можно настроить доменное имя в KeenDNS и подключить их к облачной службе Keenetic Cloud, переназначить функции аппаратных кнопок, прописать статические маршруты, выбрать режим работы сетевых портов (скорость/дуплекс) и даже добавить новых пользователей. Хотя как раз приложения, где эти пользователи могут понадобиться, толком доступны не будут, за исключением сервисов для USB-накопителей, которые будут видны всей домашней сети: FTP, SMB, DLNA, а также служб DECT-донгла. Вообще говоря, при таком подходе Keenetic определённо стоит создать отдельную серию простых и недорогих точек доступа на тех же аппаратных платформах, что и роутеры, но без программных излишеств: с чуть другими корпусами/антеннами и питанием посредством PoE, а то и вовсе в виде коробочки для установки прямо в розетку. Выбранный для теста Keenetic Air наиболее близок к такой гипотетической ТД.

Технические характеристики Keenetic Air (KN-1610)
Стандарты IEEE 802.11 a/b/g/n/ac (2,4 ГГц + 5 ГГц)
Чипсет/контроллер MediaTek MT7628N (1 × MIPS24KEc 580 МГц) + MT7612
Память RAM 64 Мбайт/ROM 16 Мбайт
Антенны 4 × внешние 5 dBi; длина 175 мм
Шифрование Wi-Fi WPA/WPA2, WEP, WPS
Параметры Wi-Fi 802.11ac: до 867 Мбит/с; 802.11n: до 300 Мбит/с
Интерфейсы 4 × 10/100 Мбит/с Ethernet
Индикаторы 4 × функ. состояние (на верхней крышке); индикаторов портов нет
Аппаратные кнопки Wi-Fi/WPS/FN, перезагрузка/сброс настроек; режим работы
Размеры (Ш × Д × В) 159 ×110 × 29 мм
Масса 240 г
Питание DC 9 В, 0,85 А
Цена ≈ 3 200 рублей
Возможности
Доступ в Интернет Static IP, DHCP, PPPoE, PPTP, L2TP, SSTP, 802.1x; VLAN; КАБiNET; DHCP Relay; IPv6 (6in4); Multi-WAN; приоритеты подключений (policy-based routing); Ping checker; WISP; мастер настройки NetFriend
Сервисы VLAN; VPN-сервер (IPSec/L2TP, PPTP, OpenVPN, SSTP); автообновление ПО; Captive-портал; NetFlow/SNMP; SSH-доступ; Keenetic Cloud; Wi-Fi-система
Защита Родительский контроль, фильтрация, защита от телеметрии и рекламы: «Яндекс.DNS», SkyDNS, AdGuard; HTTPS-доступ к веб-интерфейсу
Проброс портов Интерфейс/VLAN+порт+протокол+IP; UPnP, DMZ; IPTV/VoIP LAN-Port, VLAN, IGMP/PPPoE Proxy, udpxy
QoS/Шейпинг WMM, InteliQoS; указание приоритета интерфейса/VLAN + DPI; шейпер
Сервисы Dynamic DNS DNS-master (RU-Center), DynDns, NO-IP; KeenDNS
Режим работы Маршрутизатор, WISP-клиент/медиаадаптер, точка доступа, повторитель
Проброс VPN, ALG PPTP, L2TP, IPSec; (T)FTP, H.323, RTSP, SIP
Брандмауэр Фильтрация по порт/протокол/IP; Packet Capture; SPI; защита от DoS

Keenetic Air довольно компактен и мало весит (159 ×110 × 29 мм, 240 г), может крепиться к стене, имеет четыре поворотных антенны и два радиомодуля 2 × 2 для диапазонов 2,4 и 5 ГГц (300 и 867 Мбит/с соответственно), оснащён четырьмя сетевыми портами 100 Мбит/с и поставляется с маленьким блоком питания мощностью 7,65 Вт. Внутри у него SoC MediaTek MT7628N в паре с модулем MT7612, которые обеспечивают поддержку 802.11b/g/n/ac. По производительности он аналогичен прошлому поколению Air. Но самое главное — на корпусе у него есть аппаратный переключатель режимов работы. Поэтому, в отличие от других устройств, для перевода Air в режим точки доступа, который и нужен для работы в составе Wi-Fi-системы Keenetic, не надо лезть в веб-интерфейс, менять настройки и ждать перезагрузки — достаточно перед подключением питания просто сдвинуть рычажок переключателя в нужное положение и присоединить ethernet-кабель от контроллера системы. Особых требований к модели Keenetic, выбранной на роль контроллера, в общем-то, нет. Понятно, что если у вас уже есть несколько роутеров компании, то лучше, пожалуй, выбрать основным тот, который побыстрее хотя бы в части ethernet-портов, но это необязательно.

На роутере, который станет впоследствии контроллером Wi-Fi-системы, в настройках надо доустановить одноимённый компонент — в меню слева появится новый пункт. После включения системы Wi-Fi новоявленный контроллер просканирует сеть и предложит «захватить» подходящие точки доступа. Для работы системы требуется прошивка NDMS версии 2.15 или старше, но фактически при захвате точки доступа она всё равно будет обновлена до последней версии. В частности, у тестового Keenetic Air была довольно старая прошивка, что не помешало захватить его, обновить и включить в состав системы Wi-Fi. И… на этом процесс её настройки был завершён! Всё, что касается логики работы проводной и беспроводной сети, теперь настраивается только на контроллере и затем распространяется на все подчинённые точки доступа.

На соседней вкладке можно просмотреть журнал подключений/отключений и переходов устройств между всеми точками доступа. Переходы касаются и перемещений клиентов от одной точки доступа к другой, и переключений между диапазонами в пределах одной ТД, если активирован Band Steering. В логе можно увидеть три варианта переключений: 1) простой переход, когда клиент отключается от одной точки и заново подключается к другой — это самый медленный способ; 2) переход по PMK-кешу, когда при переподключении часть шагов отбрасывается и клиент быстрее цепляется к новой ТД; 3) быстрый переход, или Fast Transition (FT mode), который и даёт роуминг почти без потерь. Реальная же эффективность, а то и вообще наличие роуминга Wi-Fi, зависит в первую очередь от клиентов — при соблюдении всех условий всё равно именно они принимают решение о переходе и его типе, причём не всегда оптимальное.

Наиболее полную информацию о возможностях своих аппаратов в отношении поддержки стандартов, как и прежде, предоставляют Apple и Samsung — по ссылкам коротко рассказано, что такое 802.11 k/v/r и зачем нужны эти стандарты. В веб-интерфейсе Keenetic можно просмотреть текущие параметры подключения к Wi-Fi и наличие поддержки k/v/r для каждого из клиентов. Так что iPhone X, который умеет работать со всеми этими стандартами, снова был выбран в качестве тестового аппарата для проверки работы роуминга в реальной домашней сети с пачкой активных клиентов. На видео ниже хорошо видны две вещи. Во-первых, записи в логе о быстром переходе между двумя точками доступа — контроллером в лице Ultra II и подчинённым Keenetic Air. Во-вторых, снижение скорости при переходе к Air, связанное с ограничением пропускной способности проводной сети. Проводные порты у Air на 100 Мбит/с, но в данном конкретном случае для иллюстрации использовался один поток в полудуплексе, хотя мы знаем, что это не предел для данной платформы. В любом случае это самый частый и практически идеальный вариант перехода с минимальными потерей пакетов и числом ретрансмиссий. Но даже iPhone X иногда делает «медленный» переход с полным переподключением.

Быстрый роуминг Wi-Fi на iPhone X в составе Wi-Fi-системы

Для большинства других современных устройств, скорее всего, будет характерна поддержка только 802.11 k и/или v, а старые, вероятно, не поддерживают ничего из этого. Впрочем, как уже упоминалось в обзоре новой Keenetic Ultra, в реальности FT mode актуален для крайне малого числа приложений, и обычного перехода или уж тем более перехода с помощью PMK-кеша более чем достаточно. К тому же разработчики обещали в следующих релизах улучшить эффективность работы и этого метода тоже. Хотя каким-нибудь устройствам умного дома, например, это и вовсе ненужно. Их можно просто вывести в отдельный изолированный сегмент и — если расширение покрытия нужно, по большому счёту, только для них — докупить для Wi-Fi-системы совсем простые модели Start или Lite. А для типичных домашне-офисных нужд как раз подойдут новые Air, City или Extra.

Заключение

Единственным серьёзным ограничением Wi-Fi-системы в исполнении Keenetic является необходимость прокладки кабеля до подчинённых точек доступа — напрямую или через другие такие же точки. Но именно это выгодно отличает её по скорости передачи данных от mesh-решений, где опорной сетью является тот же Wi-Fi, в лучшем случае с дополнительным 5-ГГц диапазоном, который клиенты использовать всё равно не могут. От кабельных систем других вендоров Keenetic отличается простотой установки и настройки, которую осилит даже обычный пользователь. При этом решение Keenetic, что конкретно для SOHO-систем всё ещё редкость, поддерживает 802.11 k/v/r для организации роуминга вместо традиционного грубого отключения клиента от ТД при ослаблении сигнала и оставления его на волю судьбы. Естественно, для полного счастья нужна поддержка этих технологий и со стороны клиентов.

А вообще всё это, по-хорошему, заслуга исключительно программистов и общей политики компании. Как и в нашем сценарии, владельцы старых устройств получают поддержку новых функций, а при необходимости увеличения покрытия могут докупить роутеры посовременнее. Недельная работа связки Ultra II и обновлённого Air оказалась настолько незаметной, что лишь укрепила веру в необходимость создания отдельной серии точек доступа для работы в составе Wi-Fi-системы — желательно в компактном корпусе и с PoE-питанием. Что же, посмотрим. Пока компания занята выходом на зарубежные рынки, а следующее большое обновление моделей запланировано на вторую половину года.

Практически во всех выпускаемых ныне беспроводных адаптерах стандарта 802.11g можно встретить суффиксы «super G», «turbo», «plus» и т.д. Причем суффиксами дело обычно не ограничиваются. Производители (точнее их маркетологи) красочно рисуют на коробках цифры 108, а некоторые — аж 125 Мбит/сек.

125 — звучит заманчиво. Неужели беспроводные адаптеры работают быстрее старого доброго Fast Ethernet по проводам? Может ну их… в баню, эти «древние» Fast Ethernet адаптеры? Выкидываем надоевшие кабели и да здравствует радиоезернет? ��

Но, как говорится, семь раз отмерь, один — отрежь. Что в нашем случае означает, что не мешало бы поподробнее узнать, что же это за такие загадочные технологии, как они работают и какие на самом деле скорости обеспечивают (и самое главное — при каких условиях). Другими словами, не забываем анекдот про физиков и из сферических коней в вакууме. А так же делаем скидку маркетологам на то, что для них важнее всего — продать решения своей компании.

Различных вариантов «разгона» стандартного 802.11g существует довольно много. Точнее — у каждого производителя чипов оно свое (по крайней мере — называется по-разному). К сожалению, не все производители объясняют, что именно представляют из себя их технологии. Информацию по технологиям мне удалось найти лишь у компании Atheros и Texas Instruments. Но наиболее информативный ресурс оказался у Atheros — у них даже есть отдельный сайт, посвященный их технологиям Super G и Super AG.

Собственно, бОльшая часть статьи — это компиляция информации с сайтов Atheros и Texas Instruments и по мелочи — из других источников.

Переходим непосредственно к технологиям.

Для начала посмотрим на «чистый» 802.11g. Максимальная пропускная способность в этом режиме — 54 Мбит/сек. Думаю, большинство читателей знает, как перевести мегабиты в мегабайты? Правильно — делим мегабиты на восемь и получаем скорость 6.75 Мбайт/сек.

Но внимательные читатели (кто смотрит в статьях не только предисловие и выводы, а иногда пробегается, хотя бы одним глазом, по диаграммам замера скоростей) знают, что в обычном 802.11g режиме скоростей более

25 Мбит мы не получали. Так это же только половина от 54 Мбит! Куда делась вторая половина? Куда — это тема отдельной статьи, отмечу лишь, что на пользовательские данные действительно приходится примерно половина (в лучшем случае) пропускной способности канала.

Это первая плохая новость. Есть и вторая. Радиоволны (собственно, с помощью них и передается информация в беспроводных сетях) передаются во все стороны от источника сигнала (рассматриваем общий случай). Т.е. передающего слышат все. Эти «все» могут принимать данные или не принимать, это не важно. Главное — они не могут в этот момент что-либо передавать на той же частоте. Точнее говоря, попытаться то они могут, но сигналы обоих источников наложатся друг на друга, в результате чего информационная составляющая будет искажена и потеряна. Другими словами, в беспроводных сетях одновременно может передавать только один источник из нескольких, работающих на одной и той же частоте. Т.е. принцип рации — сначала говорим, потом молчим и слушаем.

Таким образом, щедро выделенные нам

25 Мбит делятся на всех участников беспроводной сети. Если количество клиентов составляет 5 хостов, то в момент интенсивной передачи данных с каждого, на одного придется канал пропускной способностью примерно 5 Мбит (а на самом деле даже чуть меньше).

Есть и третья плохая новость. Вторая «плохая новость» насчет «5 Мбит на 5 хостов» верна лишь в случае Ad Hoc сети, т.е. без точки доступа. Если брать более общий случай с точкой доступа, то эти жалкие 5 мбит придется поделить еще на два. Ведь в Infrastructure режиме беспроводной сети (с участием точки доступа) любой обмен с клиентами проходит через точку доступа. А она сначала должна принять данные, а потом ретранслировать их к получателю. В результате получаем по 2 с хвостиком мегабита на брата.

Теперь вернемся к цифрам 108 и 125, которые так любят крупным шрифтом рисовать на коробках производители. Ну, вы уже все поняли, да? ��

Смело делим на два (про сферического коня чуть позже). Получаем максимум 60мбит в случае одного клиента и соответственно в n-цать раз меньше, в случае N клиентов.

Для тех, кому надо было лишь выяснить, пора ли выкидывать провода или «еще погодить», дальнейшую часть статьи можно не читать. Ответ — выкидывать пока рано. Как минимум, надо дождаться WiMAX.

Теперь перейдем к более детальному рассмотрению рассмотрению технологий увеличения пропускной способности беспроводных сетей по сравнению со стандартным 802.11g режимом.

Полагаю, у всех производителей все их плюсы, турбо и т.д. представляют собой то же самое, что и у Atheros с TI, но с другим названием. Но детали реализаций могут различаться, поэтому не факт, что технологии различных производителей совместимы друг с другом.

Технология Atheros для 802.11g носит название Super G (есть еще одна — Super AG, это тоже самое, но для стандарта 802.11a, т.е. для сетей на 5 ГГц). Atheros Super G позволяет увеличить пропускную способность до 108 Мбит/сек. И, как честно заявляет Atheros, для пользователя скорость может достигать 60 Мбит.

Увеличение производительности достигается несколькими способами:

Atheros Super G / Super AG технологии:
  • посылка большего количества кадров за тот же временной интервал
  • увеличение пропускной способности за счет удаления части накладных расходов
  • компрессия данных в реальном времени
  • Lempel Ziv компрессия
  • увеличение пропускной способности за счет предварительного сжатия информации
  • центральный процессор компьютера не задействуется
  • агрегация (объединение) кадров (размер кадров до 3000 байт) и манипуляции с временными интервалами
  • увеличение пропускной способности за счет передачи большего количества данных в одном кадре и удаления межкадровых временнЫх пауз
  • технология, аналогичная транкингу в ethernet-сетях, т.е. задействование одновременно двух каналов для передачи
  • постоянный мониторинг окружения и подстройка скорости под текущие нужды
  • максимальное увеличение пропускной способности за счет использования нескольких (двух) каналов передачи одновременно

У себя на сайте Atheros приводит красочную диаграмму, показывающую влияния различных технологий на скорость передачи данных:

В базовом режиме 802.11g или 802.11a, в котором все расширенные технологии отключены, можно получить скорость до 22 Мбит (чистых, т.е. доступных пользователю). Добавляя технологии, которые возможно будут в будущем стандарте 802.11e (Bursting, Fast Frames, Compression), можно увеличить скорость до 40 Мбит включительно. Активируя Dynamic Turbo режим, т.е. задействуя два канала под передачу данных, можно довести скорость до теоретического максимума в 60 Мбит.

Разумеется, приведенные цифры — это лишь максимально возможная скорость в данном режиме работы (тот самый сферический конь в вакууме). В реальности все будет зависеть от таких условий, как удаленность клиента от точки доступа, количество одновременно работающих клиентов, радиообстановка в месте, где расположена беспроводная сеть и так далее.

У Texas Instruments технологии повышения производительности носят название G-Plus. Часть из них похожа на технологии Atheros, часть — присуще только TI.

Texas Instruments G-Plus технологии:
  • объединение данных из нескольких пакетов — в один (размер пакета — до 4000 байт)
  • увеличение пропускной способности за счет удаления служебной информации заголовков «лишних» кадров и удаления времени межкадрового ожидания
  • аналогично технологии от Atheros
  • аналогично технологии от Atheros

Подробно остановимся на каждой из перечисленных технологий — bursting, compression, fast frames, dynamic turbo. Примечательно то, что все четыре технологии работают независимо друг от друга, тем самым добиваясь максимально возможной производительности одновременно несколькими способами.

1. Bursting.

Frame Bursting — технология, заложенная в предварительный вариант стандарта 802.11e QoS. Frame Bursting позволяет увеличивать пропускную способность линка при обмене (точка-точка) между 802.11a, b или g устройствами за счет уменьшения накладных расходов, возникающих при передаче данных в беспроводных сетях. Причем хорошие результаты достигаются как в гомогенных (однородных), так и в смешанных беспроводных сетях.

На рисунке 2 приведен пример стандартной передачи (without bursting).

В режиме стандартной передачи данных мы наблюдаем процесс передачи двух кадров (frame1 и frame2) во времени от источника Source к получателю Destination. Процесс передачи данных поделен на временные интервалы (по оси X — ось времени). Так как в любой момент времени передавать может лишь один источник, то каждая станция слушает эфир в течении времени DIFS (Distributed InterFrame Space), если она не услышала передачи другой станции, значит эфир свободен, можно передавать кадр. После передачи кадра (frame1), станция-передатчик ждет подтверждения об успешном приеме от получателя. Получатель обязан отослать подтверждение (ack), которое он отсылает практически сразу, после ожидания короткого промежутка времени SIFS — Short InterFrame Space (если подтверждения не было, то получатель считает, что кадр не был принят и должен перепослать его заново). После получения подтверждения передатчик опять обязан выждать интервал времени DIFS и только потом (если эфир по-прежнему свободен) начать отсылку второго кадра frame2. И так далее.

Таким образом, кадры ожидания DIFS отнимают достаточно существенную часть пропускной способности беспроводной сети.

Теперь посмотрим на картину передачи при использовании технологии Frame Bursting:

В этом режиме (рисунок 3), источник и получатель монопольно [по очереди] занимают канал под свою передачу. После передачи кадра frame1 и получения подтверждения об успешном приеме оного, передатчик не ждет положенный интервал времени DIFS. Передатчик выжидает лишь короткий временной интервал SIFS, после чего передает второй кадр данных и так далее. Тем самым, передатчик не дает возможности начать передачу другим станциям — им приходится ожидать окончания общего периода такой burst-передачи.

Разумеется, общий интервал передачи данных в таком режиме ограничен (а то передача нескольких гигабайтов данных полностью бы парализовала работу остальных клиентов той же беспроводной сети). Но удаление интервала DIFS позволяет за тот же период времени передать существенно бОльшее количество данных, тем самым экономя пропускную способность канала, т.е. увеличивая общую скорость передачи данных.

Atheros заявляет, что все ее продукты данную технологию поддерживают. Но очевидно, что устройства других производителей, в которых эта технология не встроена, могут и не понять такой «разрывной» режим работы. Поэтому, если подтверждение на посланный в начале burst-режима пакет не получено получателем, передатчик отключает bursting и переходит в базовый режим работы.

Реализация Bursting у TI аналогична технологии Atheros. TI приводит следующую картинку, иллюстрирующую работу их технологии (рис 4):

TI тоже удаляют «длинный» временной фрейм ожидания, тем самым сокращая накладные расходу на передачу.

Информация о совместимости burst-технологий в реализациях от TI и Atheros на сайтах обеих компний отсутствует.

Подобная «bursing» технология, вероятно, присутствует и у других производителей. Но Atheros пошла дальше и расширила ее до «dynamic bursting». По ее заверениям, эта технология особенно эффектна в сетях с количеством работающих беспроводных клиентов больше единицы.

К примеру, в беспроводной сети две станции, одна расположена близко к точке доступа, другая удалена от нее. Разумеется, дальний клиент работает с точкой доступа на более низкой скорости (из-за расстояния). Поэтому для передачи данных определенного размера (для ближайшего клиента) ему потребуется больше времени, чем ближайшему — для приема этих данных. В этом случае активация bursting для дальней станции позволит ей сократить время передачи порции данных и, как ни странно, это же позволит ближайшей станции еще быстрее эти данные принять (так как она меньше будет ожидать на линии освобождения эфира). Интервалы, на которые клиенты могут занять эфир «burst»-передачей, также зависят от удаленности (точнее, скорости работы) клиентов. Ближайший клиент получит грант на более длинную burst-передачу, так как за единицу времени он передает больше данных (и быстрее освободит эфир).

Atheros Compression technology.

Вторая технология от Atheros, расширяющая стандарт 802.11 — аппаратная компрессия данных. Она встроена во все 802.11a,b,g чипсеты компании. Используемый алгоритм — Lempel Ziv. Этот же алгоритм используется в архиваторах gzip, pkzip, winzip. Данные «на лету» упаковываются перед пересылкой и распаковываются на принимающей стороне.

К сожалению, данные предварительно не анализируются, а сжимаются все кадры подряд. Тем самым, выигрыш достигается не всегда — например, пересылка уже упакованного файла может увеличить размер передаваемых по беспроводной сети данных.

С другой стороны, хорошо подверженные компрессии данные будут переданы кадрами меньшего размера, тем самым передатчик займет меньше эфирного времени на свою передачу. Это время может быть использовано для работы других беспроводных клиентов.

Atheros Fast Frames.

Технология Fast Frames предлагает слияние двух кадров в один, большего размера. Тем самым, мы избавляемся от служебной информации (в заголовке второго пакета — остается лишь один заголовок нового кадра) и временных пауз ожидания между кадрами:

Причем размер полученного кадра-фрейма может достигать 3000 байт, что в два раза больше максимального размера кадра стандартного ethernet-пакета. Таким образом, даже если идет поток данных из проводной сети с пакетами максимального (1500 байт) размера, технология Fast Frames все равно будет работать, объединяя каждые два ethernet-пакета в один бОльшего размера. Как только FastFrames-алгоритм будет согласован между точкой доступа и станцией, все дальнейшие пересылки данных между этими двумя устройствами будут происходить с использованием таких, увеличенных вплоть до 3000 байт, кадров.

С учетом того, что Fast Frames может работать совместно с Frame Bursting, мы получаем очень неплохие результаты по скорости передачи. Кстати говоря, как заявляет Atheros, большинство производителей, реализовавших в своих чипах технологию Frame Bursting, тем не менее, не поддерживают Fast Frames. У Atheros тут все впорядке — их продукты держат и то и другое.

Технология Fast Frames — тоже часть черновой версии стандарта 802.11e. Тем не менее, ее совместимость с продуктами других производителей не гарантируется. С другой стороны, технология работает в рамках стандартных временных интервалов (в отличии от Frame Bursting, которая монопольно занимает полосу на некоторое время). Именно поэтому Fast Frames лучше вписывается в беспроводные сети, где используется оборудования различных производителей.

Texas Instruments Frame Concatenation

Технология Frame Concatenation, реализованная в продуктах компании Texas Instruments, использует те же принципы, что и Fast Frames у Atheros.

Но TI пошли дальше. У них объединению подвергаются два и более кадров (рисунок 7):

Тем самым, они выигрывают на удалении служебной информации и межкадровых интервалов ожидания от одного и более кадров. TI заявляет, что их технология Frame Concatenation будет работать с любыми 802.11b/b+/g продуктами от TI и (!)других производителей. Не совсем ясно, что они имели ввиду под другими производителями, если у последних поддержка этой технологии не будет реализована… Возможо имелась ввиду работа с кадрами, размер которых не превышал стандартного (1500 байт) размера.

В технологию Frame Concatenation заложен алгоритм, позволяющий упаковывать в мега-кадры не все пакеты подряд. Например, если в очереди отправки на заданное направление находится лишь один кадр, то он будет отослан незамедлительно. Другими словами, сливаться будут лишь те кадры, у которых одинаковый адрес получателя (destination address, в данном случае имеется ввиду MAC адрес получателя). Причем, алгоритм действует только на unicast-пакеты — широковещательные (multicast), а так же служебные пакеты отсылаются без изменений.

На данный момент, максимальный размер Concatenation-пакета может достигать 4096 байт (что косвенно говорит о том, что эта технология не совместима с подобной же технологией от Atheros).

Заключение.

Как видно, производители не дожидаются официального объявления стандартов (в данном случае 802.11e), а интегрируют новые технологии в свои продукты. В результате, с одной стороны, достигаются неплохие результаты в виде увеличения скорости, с другой — технологии различных производителей часто оказываются несовместимы друг с другом.

Не рассмотренной осталась технология агрегирования каналов у Atheros (Dynamic Turbo). Про нее — во второй части статьи.

А если к тому времени найдутся документы, описывающие реализации super/plus/etc технологий у других производителей беспроводных решений (или мне подскажут ссылки них в форуме (ссылка чуть ниже)), то обзор этих технологий также будет добавлен во вторую часть статьи.

Keenetic: улучшить ситуацию с Wi-Fi в многоквартирном доме

Moscow, morning, sunrise

На страницах своего блога, я уже обращал внимание на проблему с доступом к сети Wi-Fi в многоквартирных домах. Суть ее в том, что эфир частот, на которых работает традиционная сеть Wi-Fi, катастрофически перегружен. Он перегружен до практически полной неработоспособности сети. В этой статье хочу попробовать разобраться в чем именно заключается проблема и как с ней бороться.

Из-за чего происходит перегрузка эфира на частотах Wi-Fi

Начнем с того, что сама технология Wi-Fi была разработана еще в 90-х года прошлого века. С тех пор успело вырасти целое поколение, а требования к компьютерным сетям, задержкам на передачу в этих сетях и объемам прокачиваемых данных, выросли многократно.

Как видели себе будущее разработчики Wi-Fi спецификаций первого поколения? Они трезво оценивали ситуацию и понимали, что высокой плотности и больших объемов данных не будет. По началу не будет. Да и технологическая база на которой можно построить сеть здесь и сейчас не позволяет дешево получить хоть какие-то выдающиеся результаты по производительности. И в действительности, чем можно было загрузить сеть Wi-Fi в 90-х? Просмотром web-страничек оптимизированных под Dial-Up с минимум картинок, без видео и множества подгружаемых библиотек, да перекачкой пары документов с локального файлового сервера к себе на лэптоп. Именно под такие запросы спроектировали технологию Wi-Fi работающую на частотах 2.4 ГГц позволяющую сразу покрыть значительную область пространства, и которая не будет стоить космически дорого для конечного потребителя. К слову сказать, в то же время был разработан стандарт и на 5 ГГц сеть, но ее решили отложить на будущее.

Радиосигнал на такой частоте (2.4 ГГц) относительно хорошо проходит через препятствия. Пара бетонных стен или перекрытий его не останавливают, поэтому одной точкой доступа Wi-Fi можно покрыть сразу существенную площадь (квартиру в панельном доме вместе с соседями — легко). Дешево и сердито. Не нужно тянуть кабеля, делать розетки. Данные сами приходят клиентам по воздуху.

Кстати, о клиентах. Радиочастотные диапазоны во всех странах, за исключением совсем отсталых, прибирали к рукам силовые и государственные структуры. Забирали широкие диапазоны самых удобных и практичных для работы частот. А гражданским доставались крохи, в которых они вынуждены ютиться. Да еще до кучи надо ограничить мощность передающего устройства, а то мало ли что, вдруг это шпионы транслируют разведданные. Исходя из технологических возможностей и регуляторных ограничений инженеры нарезали выделенный им диапазон на отдельные каналы. А поскольку в разных странах разные ограничения, то и каналов у кого-то больше, у кого-то меньше. Самое большое количество каналов в Wi-Fi 2.4 ГГц есть в Японии, целых 14, в большинстве стран мира их всего 13, а в Северной Америке власти зажали диапазоны и каналов американцам доступно всего 11. Но и это еще не все.

Несмотря на заявляемое солидное количество каналов в действительности их куда меньше. Дело в том, что радиоволны в выбранном частотном диапазоне могут интерферировать (накладываться) друг с другом и тем самым возникают ошибки, которые приводят к снижению скорости передачи. По факту при ширине канала в 20 МГц (чем шире канал, тем большую канальную скорость можно получить) в стандартном 13-ти канальном диапазоне умещается всего 4 рабочих канала. Работая на этих каналах устройства не будут мешать друг другу. Но если нужна скорость выше, то нужна и большая ширина канала. На частоте 2.4 ГГц в Wi-Fi можно задействовать ширину канала в 40 МГц. Но тогда таких не мешающих друг другу каналов в диапазоне поместится всего 2.

загрузка эфира на 2.4 ГГц

По данным Wi-Fi Monitor эфир на 2.4 ГГц загружен полностью. Все SSID не помещаются на экране, поэтому они периодически обновляются. Метки расстояния приложение ставит не самые точные.

Другая проблема заключается в возникновении коллизий. Когда эфир на одном канале используется одной точкой доступа, то она (точка доступа) распределяет эфирное время между своими клиентами позволяя наиболее эффективным образом использовать диапазон, обеспечивая наименьшие задержки и максимальную пропускную способность. Но, если на этом же или смежном (тот который интерферирует) канале работает другая точка доступа, то у нее нет нормальной возможности распределять время своих клиентов и согласовывать его с временем передачи на другой точке доступа. Получается, что данные, передаваемые одной точкой доступа, могут быть повреждены (заглушены) данными с другой точки доступа. Так возникают ошибки, которые требуют повторной передачи данных. А теперь представьте, что в зоне «видимости» не одна точка доступа, а порядка 40 и две сотни потребителей. И все это на 13 неполноценных каналах. В пиковое время, когда все школьники приходят с работы, работоспособность всей Wi-Fi 2.4 ГГц сети находится примерно на нулевом уровне. Весь эфир занят попытками повторной передачи неполученных данных.

Подавляющее большинство проблем, возникающих с Wi-Fi в многоквартирных домах, возникает как раз по причине использования чрезмерного количества точек доступа Wi-Fi, работающих в диапазоне 2.4 ГГц и сосредоточенных в относительно небольшом объеме. Но перебои в работе могут происходить и из-за других факторов. Например, из-за использования специального оборудования спецслужбами или просто эксплуатации неисправных бытовых приборов. Мифы про облучатели КГБ, которые глушат все и вся, не лишены под собой почвы, но населению проживающему в спальных районах они не угрожают. А вот неисправная дверца микроволновки способна заглушить эфир не только в рамках одной, конкретно взятой, кухни. Бытовые микроволновые печи работают как раз в диапазоне 2.4 ГГц, поэтому они могут влиять как на Wi-Fi, так и на Bluetooth связь, в случае если у такой печи нарушена радиоизоляция.

Но основным источником проблем все же является именно излишняя плотность Wi-Fi точек доступа с частотой 2.4 ГГц в жилых домах. Как правило, провайдер, который окучивает жилой массив, действует не слишком активно используя серое вещество. Каждому подключенному устанавливается роутер с точкой доступа. Оборудование используется подешевле, поэтому в нем только один диапазон Wi-Fi (т.е. 2.4 ГГц). Монтажники устанавливает роутеры и включает Wi-Fi на полную мощность. Затем довольный клиент подключает к беспроводной сети телевизор, смартфон, планшет, игровую приставку, ноутбук наконец. И наслаждается… Нет, не наслаждается, а с удивлением обнаруживает, что заявленных 80 Мбит тарифа ему явно не хватает. Странички на ноутбуке грузятся медленно, сетевая игра лагает, а со смартфона и вовсе «Кинопоиск» не открывается. Разумный вывод — скорости мало, надо докупить более дорогой тариф. И тут сосед запускает скачку торрентов на своем ноутбуке по Wi-Fi и сеть перестает работать принципиально. Вот за запуск торрентов по Wi-Fi вообще следует лишать доступа в сеть, так как технология BitTorrent и аналогичные способны утилизировать канал (и заглушить все вокруг) на 100%.

При перегрузке сети первыми сдаются смартфоны. У них небольшие антенны и самые худшие условия для приема.

У меня, в месте моего городского проживания, периодически даже переставала работать беспроводная мышка, использующая диапазон 2.4 ГГц. Курсор по экрану начинал двигаться рыками, периодически залипая. И приходилось искать решения с частотой в 5 ГГц или же использовать варианты с подключением по Bluetooth. Последний постоянно меняет каналы, чем нивелирует загруженность на некоторых из нах.

И вот что с этим делать, расскажу дальше.

Самый надежный способ исправить ситуацию с Wi-Fi

Самый надежный способ исправить ситуацию с Wi-Fi — не использовать Wi-Fi. И это серьезно. Все что можно подключить по кабелю, следует подключить именно кабелем. Подключение кабелем компьютера, ноутбука, игровой консоли и телевизора надежно решает проблемы с передачей данных. Более того, использование медиасервисов по кабелю работает куда лучше, чем по Wi-Fi, даже в сельской местности, где плотность точек доступа практически нулевая.

Переход на 5 ГГц диапазон Wi-Fi

Вторым способом решить проблему с плохим качеством доступа в сеть по воздуху является переход на использование Wi-Fi в диапазоне 5 ГГц. Большинство, если не все, современные устройства и роутеры с точками доступа двухдиапазонные. Они поддерживают работу как на частотах 2.4 ГГц, так и на 5 ГГц. На подходе устройства, работающие на больших частотах, но их применение скорее для сверхвысоких скоростей внутри одного помещения, например, комнаты. А 5 ГГц Wi-Fi способен обеспечить связью целую квартиру.

В чем преимущества 5 ГГц Wi-Fi? Во-первых, весь диапазон, отданный под беспроводную связь в этом случае заметно шире, чем у 2.4 ГГц. Соответственно удалось разместить в нем больше каналов. Во-вторых, радиоволны на частотах в районе 5 ГГц не так хорошо проходят сквозь материальные объекты, соответственно точку доступа 5 ГГц, установленную на 10-м этаже, на 8-м уже не видно и не слышно. Не будет коллизий, можно отдавать более широкие диапазоны одному потребителю. Тут уже не просто 20 и 40 МГц, а 20, 40, 80 и 160 МГц. Что, соответственно, позволяет установить существенно большую канальную скорость, нежели на 2.4 ГГц.

частоты 5 ГГц

Вот такая вот картинка открывается на частоте 5 ГГц

Конечно, низкая пробивная способность с одной стороны не позволит покрыть одной точкой доступа большие площади, придется ставить «репитеры», но с другой — никакого вредного влияния соседей и практически свободный эфир.

Если все оборудование (смартфоны, умные лампы, лэптопы, телевизоры) используемые в вашем домохозяйстве современное и поддерживает как минимум протокол ax (это Wi-Fi 6), то имеет смысл использовать уже его. Так как Wi-Fi 6 работает на частотах 6 ГГц, где сейчас практически нет никого из соседей и эфир будет максимально чистым.

Мощность сигнала

Говорят, что если дать побольше мощность сигнала на Wi-Fi, то будет работать все намного лучше и интереснее. Но по факту получается далеко не всегда так. Излишне мощный сигнал может навредить. Переотражения сигнала могут усиливать интерференцию и вызывать дополнительные ошибки. А еще мешать соседям.

Проблема с Wi-Fi 2.4 ГГц в многоквартирных домах была бы куда менее выраженной, если монтажники устанавливали достаточную мощность сигнала, а не лепили везде максимальную. В любом случае, стоит поэкспериментировать с мощностью, снизить ее до необходимого предела. В современных роутерах, например, поддерживающих Wi-Fi 6 (протокол ax) обычно уже используется отдельный механизм автоматической регулировки мощности передатчика наравне с выделенным анализатором спектра, позволяющим выбирать наиболее оптимальные каналы и мощность для обеспечения максимальной скорости при высокой стабильности.

В некоторых роутерах, не будем показывать пальцами, есть специальные режимы повышенной мощности передатчика. Применяются они только для связи двух удаленных точек по воздуху между собой и с применением направленных антенн. Если применить повышенную мощность к обычным антеннам и рядовому использованию, то работать все будет хуже, чем на существенно более низкой мощности.

Ширина канала

Выше я уже упоминал, что на 2.4 ГГц может быть использована ширина канала в 20 или 40 МГц. Чем больше ширина, тем большую канальную скорость можно получить. Но в плотном эфире реальная скорость будет ниже, чем на менее широком канале из-за ошибок, вызванных коллизиями с другими точками доступа.

Поэтому, в многоквартирном доме лучше использовать ширину в 20 МГц на Wi-Fi 2.4 ГГц, так как результирующая пропускная способность будет выше, чем с более скоростным и широким каналом. Иными словами, лучше медленнее и надежнее, чем быстро, но без результата.

Канал

Выбор наименее загруженного канала позволяет существенно облегчить проблематику связи. Но если в 12 часов дня загруженность одного канала минимальна, то вечером, когда сосед Коля возвращается с работы и врубает свой ноут, ситуация может поменяться кардинально.

Во многих современных роутерах есть возможность автоматического выбора канала, как по расписанию, так и вообще динамически по мере загрязнения эфира. Подстройка канала под эфир не панацея, но в некоторых случаях может помочь. Тут важно помнить, что далеко не всегда клиентское оборудование сможет адекватно отрабатывать смену канала на роутере. Возможны кратковременные обрывы связи.

Канал, на котором работает Wi-Fi можно выбрать и вручную. Опять же стоит помнить об интерференции и то, что каналов на самом деле не так много. В случае переполненного эфира имеет смысл рассматривать крайние каналы, 1-й или 13-й, тогда хотя бы часть их диапазона не будет затронута соседскими точками доступа.

Некоторые исследователи по жизни умудряются задействовать 14-й канал из 2.4 ГГц диапазона Wi-Fi и работать на нем. Меняют страну настроек, возможно еще и применяют протокол b. Но при этом нужно помнить, что незаконное (без разрешения) использование частоты может привести к правовым последствиям, особенно для юридических лиц. Частника на 18-м этаже многоэтажки в спальном районе и искать никто не будет, а вот контору с окнами на Маросейку и не особо грамотным системным администратором могут поставить на колени. Но при использовании 14-го канала нужно быть уверенным, что все остальное оборудование умеет на нем работать. Особо стоит обратить внимание на оборудование и гаджеты, выпущенные исключительно для североамериканского рынка, там того и гляди все, что выше 11-го канала будет уже недоступно, а тут 14-й.

При использовании Wi-Fi 5 ГГц тоже есть особенности. Частотный диапазон под использование выделен не весь. Например, в России доступны каналы с 32 до 68 и с 132 до 169. Чем ниже канал, тем на меньшей частоте он работает и тем лучшую «пробивную» способность имеет. Поэтому имеет смысл пробиваться в зону верхних каналов, где сосед Коля не сможет светить своим Wi-Fi на весь многоэтажный дом.

Протокол

По большому счету от смены протокола Wi-Fi больших изменений ожидать не стоит. Так задумано, чем современнее протокол, тем большую скорость он может показать. Но при этом нужно учитывать еще и загруженность эфира и канала в целом. В одной ситуации скорость может повыситься, передача одного набора данных будет занимать меньше времени и будет меньше коллизий. И ровно нам же, из-за помех в канале, более мелкие фреймы данных окажутся менее помехозащищенными. В общем нужно пробовать и желательно в самый час пик, когда сосед Николай вошел в раж и старается выжать из беспроводной сети последние остатки разума.

Протокол b (11 Мбит) стал первым массовым протоколом Wi-Fi, и он открывает дорогу семейству протоколов для частоты 2.4 ГГц. Дальнейшее его развитие выражается в более скоростном протоколе g (54 Мбит), а затем и n (450 Мбит). На этом развитие частотного диапазона 2.4 ГГц фактически завершается. Указанные скорости в скобках являются канальными скоростями, которые можно получить при хороших внешних условиях. Поэтому не стоит ожидать того, что переключившись на протокол b получится надежно, хоть и медленно, выкачивать интернет на скорости в 11 Мбит/сек. Реальная скорость, разумеется, будет меньше.

Настройка сети Keenetic

Только рабочие протоколы, узкий диапазон, пониженная мощность сигнала и крайний канал на Keenetic для 2.4 ГГц

Со стороны 5 ГГц диапазона первенцем стал протокол a (он увидел свет даже чуть раньше, чем b, но в то время приоритет отдали именно b). Затем последовал ac, обеспечивающий доступ на скоростях свыше 1 Гбит и именно его мы знаем как 5 ГГц протокол. А в последствии появился и ax, работающий на еще большей частоте. В природе существуют и другие протоколы, например, ah, работающий на частоте в 900 МГц, но устройства с его поддержкой еще поискать нужно.

Правду говоря, некоторые протоколы, например n, могут работать сразу на двух частотах. Но хорошо ли это? Не думаю. Так как не все роутеры могут работать одновременно сразу с несколькими протоколами на одной частоте. И если у вас в сети вдруг завелся древний ноутбук, у которого на борту только b, то есть вероятность, что все остальные устройства точно также будут переведены на протокол b, со всеми вытекающими отсюда последствиями в виде максимальной канальной скорости в 11 Мбит. И аналогично с протоколами n и ac при использовании их на частоте 5 ГГц. Что же тут делать? Придется обновлять парк оборудования до современных стандартов.

Репитер vs экстендер vs Mesh

Для покрытия надежной беспроводной сетью загородного дома даже средних размеров, как правило приходится прибегать к расширению зоны покрытия путем добавления дополнительных точек доступа. В условиях одноуровневой городской квартиры применение дополнительной точки доступа, как правило, не принесет облегчения в работе. Соседи эфир не очистят, а дополнительный источник радиосигнала ситуацию только усугубит. Лучше постараться установить единственную точку доступа (считай роутер с Wi-Fi) максимально по центру всех помещений. Тогда сигнал будет добираться в приемлемом качестве до всех уголков квартиры. Единственным исключением тут может служить конфигурация квартиры, с хитрыми изгибами и лабиринтом из комнат. Тут уже можно говорить о дополнительном источнике Wi-Fi на другом конце жилплощади.

Keenetic Mesh

Работающая система Mesh на Keenetic с исключительно проводным подключением

Добавлять дополнительные точки доступа можно разными способами. Самый правильный — использование проводных точек доступа. Такой способ подключения присутствует во всех современных роутерах нормальных производителей. Беспроводной вариант объединения точек доступа в одну сеть в условиях перегруженного эфира скорее даст отрицательный эффект, эфир окажется еще более загруженным, а максимальная скорость ниже, так как один канал будет задействован дважды (от клиента к точке и от точки к корневому роутеру). Хотя и тут есть исключение. В протоколе ax уже реализована возможность объединения точек доступа без проводов на канале отличном от рабочего. А реализация столь полезной функции зависит от производителя устройства.

В роутерах Keenetic, можно организовать Mesh систему Wi-Fi с работой как проводному каналу, так и по беспроводному. Лучше везде, где возможно, стараться использовать проводной вариант, соответственно желательно работать именно по проводу при построении Mesh сети.

Band Steering

Многие современные устройства поддерживают сразу несколько Wi-Fi диапазонов. Другими словами, могут работать как с Wi-Fi 2.4 ГГц, так и с Wi-Fi 5 ГГц. А самые современные устройства уже работают и с Wi-Fi 6 ГГц. Понятно, что для того, чтобы работать на Wi-Fi 5 ГГц нужно чтобы и клиентское устройство, например, смартфон, и роутер поддерживали этот стандарт. Иначе они просто не смогут соединиться.

Для максимальной поддержки всех возможных устройств, роутеры конфигурируются сразу для работы на частотах 2.4 и 5 ГГц. Аналогично и клиентские устройства, если уж и оснащены 5ГГц Wi-Fi, то не обделены и 2.4 ГГц версией. Соответственно одно и тоже устройство в одной и той же физической инфраструктуре способно работать как на частоте 2.4, так и 5 ГГц (не говоря уже о 6 ГГц и других диапазонах).

Bans Steering Keenetic

Настройки Band Steering в Keenetic

Как мы уже выяснили диапазон 2.4 ГГц загружен точками доступа и клиентами до невозможности. Работать в таком режиме практически невозможно. Но в таком случае на помощь должен прийти механизм Band Steering, который, при правильной настройке, предложит двухдиапазонному беспроводному устройству подключиться к 5 ГГц сети, где намного свободнее, а скорости выше.

Так должно происходить в теории, но на практике получается несколько иначе. Возвращаясь с улицы, я еду на лифте и мой смартфон успешно подключается к моей 2.4 ГГц сети. Лифт скоростной, Wi-Fi мощный, подключается уверенно и сразу на большой канальной скорости.

Далее я вхожу в квартиру, попадаю в зону действия 5 ГГц сети. Роутер предлагает телефону подключится к 5 ГГц сети, но мой смартфон отказывается переключаться (на врезке ниже). Переключение диапазона — дело добровольное. Хочешь переключайся, хочешь нет. Причина нежелания закодирована в лаконичном ответе bndstrg-демона на стороне Keenetic. Телефон так и остается подключенным к 2.4 ГГц сети, а я начинаю страдать, так как работать в диапазоне 2.4 ГГц решительно невозможно.

Телефон еще некоторое время сопротивляется, но потом все же, по решению своей правой задней пятки решается на переключение и интернет наконец-то начинает работать так как должен. Ведь 5 ГГц большой и он практически свободен. К счастью, не каждый сосед дорос до использования современных технологий, ну и железобетон решает.

И что же в такой ситуации делать? У меня выработалось целых два варианта.

Сегрегация точки доступа

В этом варианте вместо двух сетей (2.4 и 5 ГГц) с одним и тем же названием (SSID) я организую две сети: MyNet и MyNet5G. В телефоне отключаю автоматический вход в сеть MyNet и подключаюсь к сети MyNet5G.

В этом варианте телефон не будет вообще подключаться к моей сети в диапазоне 2.4 ГГц, а будет работать только и исключительно с 5 ГГц вариантом. Благо он отлично покрывает всю жилую площадь.

Отключение доступа устройства на стороне роутера

Разделение на две сети хоть и максимально простое, но не самое удачное решение если используется Mesh или другая агрегация точек доступа. В этом случае часть функций работать не будет.

Keenetic настройка подключения к сети

Отключение доступа к 2.4 ГГц сети в настройках конкретного устройства на Keenetic

К счастью, в Keenetic присутствует возможность определить для каждого из отдельных устройств сеть, к которой он может подключиться. В этой настройке я оставляю только подключение к сети с диапазоном 5 ГГц и смартфон уже не может подключиться к 2.4 ГГц варианту. Название (SSID) обоих сетей при этом остается единым.

Выводы

Мир беспроводных сетей загадочен и пугающе многообразен, но он стал незаменимым атрибутом каждого дома. У нас слишком много устройств, требующих беспроводной доступ к глобальной сети. И зачастую Wi-Fi приносит не радость от доступа к информации и комфорт, а разочарование и недовольство. Дабы снизить уровень недовольства и повысить довольства можно попробовать выполнить следующие простые рекомендации:

  • Перейти на подключение кабелем там, где это только возможно.
  • Использовать только 5 ГГц (ac) и выше (ax). При необходимости применить принудительное подключение к сетям 5 ГГц и выше через разделение сетей на разные SSID или ограничение доступа к диапазону 2.4 ГГц со стороны роутера.
  • Отключить старые протоколы (b, g) если их не использует никакое оборудование или обновить сетевые карты там, где это возможно до современных стандартов.
  • Попробовать понизить мощность передатчика на роутере/точке доступа.
  • Не использовать репитеры, экстендеры, Mesh там, где достаточно одной точки доступа.
  • На частотах 2.4 ГГц использовать только 20 МГц ширину канала.
  • Использовать каналы на границах диапазона, например, 13 или 1.
  • На 5 ГГц частотах, если позволяют площади, использовать каналы свыше 132-го для лучшей изоляции от соседей.

В моем случае, я использую проводное подключение везде, где возможно. А для лучшего доступа с мобильных устройств разделил сети по частотам и разрешил подключаться только к 5 ГГц сетям.

Update.01.01.23: В версиях прошивки 3.9 для Keenetic появился крайне удобный инструмент мониторинга за Wo-Fi сетями.

keenetic, wifi, monitoring, мониторинг, вйафай, кинетик

Данные мониторинга присутствия Wi-Fi сетей на частотах 2.4 ГГц

Циферки в синих столбиках отображают количество присутствия сетей на том или ином канале. Нет, мой роутер не ловит 260 сетей, просто при использовании 40 МГц занимается сразу несколько каналов. Всего сетей в зоне видимости 40 штук.

5 ггц, сети, кинетик, вайфай монитор

Загруженность эфира на диапазоне 5 ГГц

А вот на гистограмме 5 ГГц диапазона все куда более прозаичнее. Есть свободные каналы, а сетей обнаружено всего 12 штук. Что позволяет вполне комфортно существовать в эфире.

Опубликовано 20.09.2022 автором kvv213 в следующих категориях:
не только лишь все статья

Похожие публикации:

  1. Outlook как сбросить все настройки
  2. На ваше решение что значит
  3. На какой мощности разогревать в микроволновке
  4. Пропали страницы в ворде как вернуть

Что такое Tx Burst в роутере. Tx Burst в роутере: как повысить пиковую скорость передачи данных

Tx Burst — это непрерывный режим передачи данных, который позволяет увеличить пиковую скорость передачи от интернет-центра к клиентам 802.11n/ac. Этот метод передачи данных может быть особенно полезен для людей, которые нуждаются в высокоскоростном доступе к интернету. Однако следует отметить, что работа данного режима зависит от возможностей беспроводного адаптера клиента.

Выберите интересующий вас раздел, перейдя по ссылке:

�� Какую частоту ставить на роутере
�� Как ускорить загрузку роутера
�� Что происходит при перезагрузке роутера
�� Как сбросить ошибки роутера
�� Результаты
✌️�� Поделиться отзывом о статье

Tx Burst — это режим передачи данных в роутере, который позволяет увеличить скорость передачи данных от интернет-центра к клиентам с использованием 802.11n/ac. Данный режим включает непрерывную передачу данных для увеличения скорости передачи исходящих данных. Однако, эффективность работы данного режима напрямую зависит от возможностей беспроводного адаптера у клиента. Если у клиента нет поддержки данного режима, то его использование может не принести значимого улучшения скорости передачи данных. В целом, Tx Burst — это полезная функция, но ее использование нужно проводить с осторожностью и рассмотреть все возможности и ограничения перед тем, как включать данный режим в работу.

Нужно ли включать Tx Burst в роутере

Многие современные коммутаторы и маршрутизаторы поддерживают использование Tx Burst. Однако, перед тем, как включать этот режим передачи данных, необходимо убедиться, что все устройства в сети поддерживают эту функцию. Если какое-то устройство не поддерживает Tx Burst, то включение этой функции может ухудшить работу всей сети.

Интервал маяка в настройках роутера

Интервал маяка (Beacon Interval) — это временной интервал между передачами маяка. Маяк — это периодический импульс, передаваемый беспроводным клиентом или маршрутизатором и информирующий сеть о том, что он по-прежнему активен. Значение этого параметра должно быть установлено в диапазоне от 1 до 1000 миллисекунд. Чем меньше значение интервала маяка, тем меньше задержка в передаче данных.

Порог RTS в роутере

Пороговое значение RTS используется как триггер для пересылки сообщений RTS и CTS между Access Point (АР) и клиентом. Значение интервала маяка указывает интервал частоты маяка. Маяк — это пакет, передаваемый через маршрутизатор для синхронизации беспроводной сети. Настройка порога RTS может помочь улучшить качество передачи данных в беспроводной сети.

Ширина канала в роутере

Ширина канала (Channel Width) — это настройка, которая определяет ширину полосы пропускания, доступную для передачи данных. Более широкие каналы обеспечивают более высокую скорость передачи данных, но могут также увеличить вероятность возникновения помех. Поэтому выбор ширины канала должен зависеть от конкретных условий работы беспроводной сети.

Как настроить Tx Burst в роутере

Если вы хотите использовать Tx Burst в своей беспроводной сети, вам следует выполнить следующие шаги:

  1. Определите, поддерживают ли все устройства в вашей сети Tx Burst.
  2. Войдите в настройки вашего маршрутизатора.
  3. Найдите настройки Wi-Fi и выберите нужную сеть.
  4. Найдите параметр Tx Burst и включите его.
  5. Настройте интервал маяка и порог RTS.
  6. Настройте ширину канала в соответствии с условиями работы вашей беспроводной сети.

Выводы

Tx Burst позволяет увеличить пиковую скорость передачи данных в беспроводной сети. Однако использование данного режима передачи данных может вызвать проблемы, если не все устройства в сети поддерживают эту функцию. Настройка параметров маяка, порога RTS и ширины канала поможет улучшить качество передачи данных в беспроводной сети и обеспечить более быстрый доступ к интернету.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *